

Tenblock 30 Soudan Avenue, Suite 200 Toronto, ON, M4S 1V6 File No. 21-195 February 3, 2023

Attention: Matthew Kelling

RE: HYDROGEOLOGICAL REVIEW REPORT 48 Grenoble Drive, Toronto, Ontario

Grounded Engineering Inc. ("Grounded") is pleased to provide you with this Hydrogeological Review for the site known as 48 Grenoble Drive, in Toronto, Ontario.

The following documents are provided as part of this package:

- City of Toronto Hydrogeological Review Summary Form
- City of Toronto Foundation Drainage Summary Form & Technical Brief
- Hydrogeological Review Report

As part of the development applications process, the City of Toronto requires that these documents are submitted together for review.

We trust that the information contained with this report is adequate for your present requirements. If we can be of further assistance, please do not hesitate to contact us.

GROUNDED ENGINEERING

Shelby Plant, BScE, MES, EIT

Project Manager

Matthew Bielaski, PEng, QP_{ESA-RA}

Principal

FOUNDATION DRAINAGE SUMMARY FORM

General Information
Applicant Name:
Development Address:
Development Application #:
Available Sewer Servicing: □ Storm Sewers □ Combined Sewers □ Sanitary Sewers
Groundwater Level Assessment
GW Monitoring Approach: □ 1. Flexible Year-Round □ 2. Peak Season □ 3. Alternate (Attach Justification)
Monitoring Length [weeks]:
Monitoring Months: □ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sept □ Oct □ Nov □ Dec
of Measurements:
Peak Observed GWL [masl]:
Estimated Maximum Anticipated GWL [masl]:
Lowest Elevation of Proposed Structure [masl]:
Proposed Condition and Measures (Complete all)
On-site Management Provided? □ Yes (Describe) □ No (Provide Rationale)
Infrastructure Required for Future Emergency Repair? Yes No
Foundation Drainage Expected to Contain Only Infiltrated Stormwater? Yes No
Site Condition: □ Non-Brownfield with no RSC □ Brownfield with RSC + Risk Management □ Other (Describe)
Proposed Foundation Drainage Management (Select one)
□ On-site Management (no long-term discharge to sewers)
□ On-site Management with Infrastructure for Future Emergency Repair (in accordance with <i>Policy 4.4</i>)
□ Long-term Discharge to Storm or Combined Sewers (in accordance with Policy Statement 4.3)
□ Request for Exemption of Policy to apply for Long-Term Discharge Agreement (in accordance with <i>Policy Sec 5.0</i>)
Description/Attachments in Foundation Drainage Technical Brief (Select all that apply)
□ On-site Management Description/Rationale for Technological Infeasibility
□ GWL Monitoring Well Plan, including Monitoring Methodology and Justification (where alternate is proposed)
□ GWL Monitoring and Peak Flow Estimation Results, Analysis & Interpretation
□ Building Elevation Plan
□ Site Condition Supporting Documentation (e.g., Brownfield/RSC Status, Soil Quality)
□ Exemption Rationale and Documentation for Technical Infeasibility and/or Extenuating Circumstances.
Describe physical and design constraints to substantiate that a technical solution was not feasible; include documentation to substantiate that there are extenuating circumstances (e.g., application submission timeline and milestones) that may warrant an exemption, where applicable.
□ Other Documentation; <i>Specify</i> -
Qualified Professional Sign-Off
Name: Designation:
Signature: Date:

Form to accompany Foundation Drainage Technical Brief document prepared in accordance with the Foundation Drainage Policy and Guidelines.

Tenblock 30 Soudan Avenue, Suite 200 Toronto, ON M4S 1V6 File No. 21-195 February 3, 2023

Attention: Matthew Kelling

Subject: Foundation Drainage Summary Form Technical Brief

48 Grenoble Drive, Toronto, Ontario

Grounded Engineering Inc. ("Grounded") is pleased to provide you with this Foundation Drainage Summary Form Technical Brief for the site known as 48 Grenoble Drive, in Toronto, Ontario.

The proposed project includes constructing two 39-storey residential towers and associated 6-storey podium with two levels of underground (P2). The lowest elevation of the proposed structure (Elev. 120.0 m) is above the Maximum Anticipated Groundwater Level (MAGWL) (Elev. 119.5 m). The proposed development will be above the MAGWL and as such, a drained foundation is possible as per the Policy.

The subject site is not a Brownfield Property, per Foundation Drainage Policy Section 4.3.a(i). An RSC is not required for development, as there is no change to a more sensitive Land Use.

We trust that the information contained in this letter is sufficient for your present requirements. If we can be of any further assistance, please do not hesitate to contact us.

For and on behalf of our team,

GROUNDED ENGINEERING

Matthew Bielaski, PEng, QP_{RA-ESA}

Principal

HYDROLOGICAL REVIEW SUMMARY

The form is to be completed by the Professional that prepared the Hydrological Review.

Use of the form by the City of Toronto is not to be construed as verification of engineering/hydrological content.

Refer to the Terms of Reference, Hydrological Review: Link to Terms of Reference Hydrological Review

For City Staff Use Only:	
Name of ECS Case Manager (Please print)	
Date Review Summary provided to to TW, EM&P	

IF ANY OF THE REQUIREMENTS LISTED BELOW HAVE NOT BEEN INLCUDED IN THE HYDROLOGICAL REVIEW, THE REVIEW WILL BE CONSIDERED INCOMPLETE.

THE GREY SHADED BOXES WILL REQUIRE A CONSISTANCY CHECK BY THE ECS CASE MANAGER.

Summary of Key Information:

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
Site Address	48 Grenoble Drive, Toronto, Ontario	Title, i (Exec Sum), 1 (Sec 1)	
Postal Code	M3C 1C8	1 (Sec 1)	
Property Owner (on request for comments memo)	Tenblock	Title, i (Exec Sum), 1 (Sec 1)	
Proposed description of the project (if applicable) (point towers, number of podiums)	Towers: Tower A (39-storeys) and Tower B (39-storeys) Podium: 6 storeys	i (Exec Sum), 1 (Sec 1)	
Land Use (ex. commercial, residential, mixed, institutional, industrial)	Current: Residential Proposed: Residential with Parkland Conveyance	1 (Sec 1)	
Number of below grade levels for the proposed structure	2 levels of underground parking	i (Exec Sum), 1 (Sec 1)	
HYDROLOGI	CAL REVIEW INFORMATION		
Date Hydrological Review was prepared:	2023-02-03	Title, 2 (Sec 1)	
Who Performed the Hydrological Review (Consulting Firm)	Grounded Engineering Inc.	Title, i (Exec Sum), 1 & 2 (Sec 1)	
Name of Author of Hydrological Review	Matthew Bielaski, PEng, QP _{ESA-RA}	2 (Sec 1), 16 (Sec 14)	

	SITE INFORMATION		Review Includes this Information City Staff (Check)
Check the directories on the website for Professional Geoscientists and/or Professional Engineers of Ontario been checked to ensure that the Hydrological Report has been prepared by a qualified person who is a licensed Professional Geoscientist as set out in the Professional Geoscientist Act of Ontario or a Professional Engineer? PEO: Professional Engineers of Ontario APGO: Association of Professional Geoscientists of Ontario	✓ Yes	N/A	
Has the Hydrological Review been prepared in accordance with all the following: Ontario Water Resources Act Ontario Regulation 387/04 Toronto Municipal Code Chapter 681- Sewers	✓ Yes	2 (Sec 1)	
Total Volume (L/day) Short Term Discharge of groundwater (construction dewatering) with safety factor included	105,000 L/day What safety factor was used? 1.5	ii (Exec Sum), 10 (Sec 10) Appendix G	

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
Total Volume (L/day) Short Term Discharge of groundwater (construction dewatering) without safety factor included	70,000 L/day	Appendix G	
Total Volume (L/day) Long Term drainage of groundwater (from foundation drainage, weeping tiles, sub slab drainage) with safety factor included If the development is part of a multiple tower complex, include total volume for each separate tower	Drained Structure – 105,000 L/day Fully Watertight Structure – 0 L/day What safety factor was used? 1.5	ii (Exec Sum), 11 (Sec 10) Appendix G	
List the nearest surface water (river, creek, lake)	The nearest waterbody is Don River, located approximately 500 m East of the Property.	4 (Sec 3)	
Lowest basement elevation	120.0 masl – finished floor elevation 119.5 masl – base of excavation	i (Exec Sum), Appendix F	
Foundation elevation	118.5 masl – base of footings	i (Exec Sum)	
Ground elevation	127.5 masl	Appendix F	

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
STUDY AREA MAP			Review Includes this Information City Staff (Check)
Study area map(s) have been included in the report.	✓ Yes	Figures 1 & 2	N/A
Study area map(s) been prepared according to the Hydrological Review Terms of Reference.	✓ Yes	Figures 1 & 2 3 (Sec 2)	N/A
WATER LEVEL AND WELLS		Page # & Section # of every occurrence in the Review	Review Includes this Information (City Staff Initial)
The groundwater level has been monitored using all wells located on site (within property boundary).	✓ Yes	4 (Sec 4), 5 (Sec 5), Figures 2 & 3	
The static water level measurements have been monitored at all monitoring wells for a minimum of 3 months with samples taken every 2 weeks for a minimum of 6 samples. The intent is for the qualified professional to use professional judgement to estimate the seasonally high groundwater level.	✓ Yes The required 3-months of ground water level monitoring has been completed for the Property.	5 (Sec 5), Appendix A	

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
All water levels in the wells have been measured with respect to masl.	✓ Yes	5 (Sec 5), Appendix A	
A table of geology/soil stratigraphy for the property has been included.	✓ Yes	i (Exec Sum), 3 & 4 (Sec 3)	
GEOLOGY AND PHYSICAL HYDROLOGY		Page # & Section # of every occurrence in the Review	Review Includes this Information (City Staff Initial)
The review has made reference to the soil materials including thickness, composition and texture, and bedrock environments.	✓ Yes	3 & 4 (Sec 3)	
Key aquifers and the site's proximity to nearby surface water has been identified.	✓ Yes	3 (Sec 3)	N/A
PUMP TEST/SLUG TEST/DRAWDOWN ANALYSIS		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)
A summary of the pumping test data and analysis is included in the review.	A pumping test was not conducted.	6 (Sec 6.1)	
The pump test been carried out for at least 24 hours if possible. If not, has a slug test been conducted?	✓ Yes A pump test was not conducted. Slug tests were conducted.	6 (Sec 6.2)	

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
Have the monitoring well(s) have been monitored using digital devices? If yes how frequently?	✓ Yes Yes, water level measurements have been taken using a Solinst Oil/Water Interface Meter (Model 122) with a 60 m long tape. The frequency of the measurements was every two weeks over the course of a 3-month period.	5 (Sec 5)	
If a slug or pump test has been conducted has the static groundwater level been monitored at all monitoring well(s) multiple times to measure recovery? -prior to the slug or pumping test(s)? -post slug or pumping test(s)?	✓ Yes ✓ Yes ✓ Yes	5 (Sec 5), 6 (Sec 6.2)	N/A
The above noted slug or pump tests have been included in the report.	✓ Yes	6 (Sec 6.2), Appendix B	
WATER QUALITY		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)
The report includes baseline water quality samples from a laboratory. The water quality must be analyzed for all parameters listed in Tables 1 and 2 of Chapter 681 Sewers of the Toronto Municipal Code (found in Appendix A) and the samples must have to be taken unfiltered within 9 months of the date of submission.	✓ Yes One (1) unfiltered groundwater sample was collected and analyzed for all parameters listed in Tables 1 and 2 of Chapter 681 Sewers of the Toronto Municipal Code.	8 (Sec 7), Appendix E	

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
The water quality data templates in Appendix A have been completed for each sample taken for both sanitary/combined and storm sewer limits.	For sanitary discharge- See the sanitary/combined sewer parameter limit template For storm discharge- See the storm sewer parameter limit template	Pg. 11-14 of Hydrological Review Summary	
Qualified professional to list all sample parameters that have violated the Bylaw limits for each sample taken for the sanitary/combined Bylaw limits If there are any sample parameter Exceedances the groundwater can't be discharged as is.	The groundwater sample met the Limits for Sanitary and Combined Sewer Discharge for all parameters analyzed.	8 (Sec 7)	
Qualified professional to list all sample parameters that have violated the Bylaw limits for each sample taken for the storm Bylaw limits. If there are any sample parameter exceedances the groundwater can't be discharged as is.	Storm Sewer: Total Suspended Solids (Result 246mg/L; Limit 15 mg/L; RDL 3 mg/L) Total Cyanide (Result 0.0711 mg/L; Limit 0.02 mg/L; RDL 0.002 mg/L) Total Manganese (Result 0.384 mg/L; Limit 0.05 mg/L; RDL 0.05 mg/L) BOD (Result 40.5 mg/L; Limit 15 mg/L; RDL 2 mg/L)	8 (Sec 7)	
The water quality samples have been analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and/or Canadian Association for Laboratory Accreditation. List of Canadian accredited laboratories: Standards Council of Canada	✓ Yes	Appendix E	N/A
A chain of custody record for the samples is included with the report.	✓ Yes	Appendix E	
Has the chain of custody reference any filtered sample? If yes, the report has to be amended and re-submitted to include only non-filtered samples.	✓ Yes	Appendix E	

SIT INFORM		Page # & Section # of Review	Review Includes this Information City Staff (Check)
List any of the sample parameters that exceed the Bylaw limits with the reporting detection limit (RDL) included. A true copy of the Certificate of Analysis report, is included with the report.	The groundwater sample met the Limits for Sanitary and Combined Sewer Discharge for all parameters analyzed. Storm Sewer: • Total Suspended Solids (Result 246mg/L; Limit 15 mg/L; RDL 3 mg/L) • Total Cyanide (Result 0.0711 mg/L; Limit 0.02 mg/L; RDL 0.002 mg/L) • Total Manganese (Result 0.384 mg/L; Limit 0.05 mg/L; RDL 0.05 mg/L) • BOD (Result 40.5 mg/L; Limit 15 mg/L; RDL 2 mg/L) ✓ Yes	8 (Sec 7), Appendix E Appendix E	
EVALUATION OF IMPACT		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)
Does the report recommend a back-up system or relief safety valve(s)? Does the associated Geotechnical report recommend a back-up system or relief safety valve(s)?	✓ Yes ✓ Yes	9 (Sec 9) 21 (Sec 3.5) of Geotech Report	
The taking and discharging of groundwater on site has been analyzed to ensure that no negative impacts will occur to: the City sewage works in terms of quality and quantity (including existing infrastructure), the natural environment, and settlement issues.	✓ Yes	12-14 (Sec 11)	N/A

HYDROLOGICAL REVIEW SUMMARY

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
Has it been determined that there will be a negative	○ No	12-15 (Sec 11-12)	N/A
impact to the natural environment, City sewage works, or	J	12 13 (300 11 12)	
surrounding properties has the study identified the			
following: the extent of the negative impact, the detail of	If yes, identify impact:		
the precondition state of all the infrastructure, City			
sewage works, and natural environment within the			
effected zone and the proposed remediation and			
monitoring plan?			

Summary of Additional Information and Key Items (if applicable):

HYDROLOGICAL REVIEW SUMMARY

Appendix A:

SANITARY/COMBINED Sample Location: BH2

Inorganics		Sample Result (mg/L)	Sample Result with upper RDL included (mg/L)	
<u>Parameter</u>	mg/L			<u>ug/L</u>
BOD	300	40.5	40.5 (2)	300,000
Fluoride	10	<1.0	<1.0 (1)	10,000
TKN	100	3.55	3.55 (0.05)	100,000
рН	6.0 - 11.5	7.48	7.48 (0.10)	6.0 - 11.5
Phenolics 4AAP	1	<0.0010	<0.0010 (0.001)	1,000
TSS	350	246	246 (3)	350,000
Total Cyanide	2	0.0711	0.0711 (0.002)	2,000
Metals				
Chromium Hexavalent	2	<0.00050	<0.00050 (0.0005)	2,000
Mercury	0.01	<0.000050	<0.0000050 (0.000005)	10
Total Aluminum	50	1.82	1.82 (0.5)	50,000
Total Antimony	5	<0.010	<0.010 (0.01)	5,000
Total Arsenic	1	<0.010	<0.010 (0.01)	1,000
Total Cadmium	0.7	<0.00050	<0.00050 (0.0005)	700
Total Chromium	4	<0.050	<0.050 (0.05)	4,000
Total Cobalt	5	<0.010	<0.010 (0.01)	5,000
Total Copper	2	<0.050	<0.050 (0.05)	2,000
Total Lead	1	<0.0050	<0.0050 (0.005)	1,000
Total Manganese	5	0.384	0.384 (0.05)	5,000
Total Molybdenum	5	0.0257	0.0257 (0.00004)	5,000
Total Nickel	2	<0.050	<0.050 (0.0001)	2,000
Total Phosphorus	10	<0.30	<0.30 (0.3)	10,000
Total Selenium	1	<0.0050	<0.0050 (0.005)	1,000
Total Silver	5	<0.0050	<0.0050 (0.005)	5,000
Total Tin	5	<0.010	<0.010 (0.01)	5,000
Total Titanium	5	0.050	0.050 (0.03)	5,000
Total Zinc	2	<0.30	<0.30 (0.3)	2,000
Petroleum Hydrocarbons				
Animal/Vegetable Oil & Grease	150	<5.0	<5.0 (5)	150,000
Mineral/Synthetic Oil & Grease	15	<2.5	<2.5 (2.5)	15,000

Volatile Organics		Sample Result (mg/L)	Sample Result with upper RDL included (mg/L)	
<u>Parameter</u>	mg/L			<u>ug/L</u>
Benzene	0.01	<0.50	<0.50 (0.5)	10
Chloroform	0.04	1.1	1.1 (1.0)	40
1,2-Dichlorobenzene	0.05	<0.50	<0.50 (0.5)	50
1,4-Dichlorobenzene	0.08	<0.50	<0.50 (0.5)	80
Cis-1,2-Dichloroethylene	4	<0.50	<0.50 (0.5)	4,000
Trans-1,3-Dichloropropylene	0.14	<0.50	<0.50 (0.5)	140
Ethyl Benzene	0.16	<0.50	<0.50 (0.5)	160
Methylene Chloride	2			2,000
1,1,2,2-Tetrachloroethane	1.4	<0.50	<0.50 (0.5)	1,400
Tetrachloroethylene	1	<0.50	<0.50 (0.5)	1,000
Toluene	0.016	0.56	0.56 (0.5)	16
Trichloroethylene	0.4	<0.50	<0.50 (0.5)	400
Total Xylenes	1.4	<1.1	<1.1 (1.1)	1,400
Semi-Volatile Organics				
Di-n-butyl Phthalate	0.08	<1.0	<1.0 (1.0)	80
Bis (2-ethylhexyl) Phthalate	0.012	<2.0	<2.0 (2.0)	12
3,3'-Dichlorobenzidine	0.002	<0.40	<0.40 (0.40)	2
Pentachlorophenol	0.005	<2.0	<2.0 (2.0)	5
Total PAHs	0.005	<1.7	<1.7 (1.7)	5
Misc Parameters				
Nonylphenols	0.02	<1.0	<1.0 (1.0)	20
Nonylphenol Ethoxylates	0.2	<2.0	<2.0 (2.0)	200

Sample Collected: February 18, 2022

Temperature: 1.9°C

HYDROLOGICAL REVIEW SUMMARY

STORM

Sample Location:

Inorganics		Sample Result (mg/L)	Sample Result with upper RDL included (mg/L)	
<u>Parameter</u>	mg/L			ug/L
рН	6.0 - 9.5	7.48	7.48 (0.10)	
BOD	15	40.5	40.5 (2)	15,000
Phenolics 4AAP	0.008	<0.0010	<0.0010 (0.0010)	8
TSS	15	246	246 (3)	15,000
Total Cyanide	0.02	0.0711	0.0711 (0.002)	20
Metals				
Total Arsenic	0.02	<0.010	<0.010 (0.010)	20
Total Cadmium	0.008	<0.00050	<0.00050 (0.00050)	8
Total Chromium	0.08	<0.050	<0.050 (0.050)	80
Chromium Hexavalent	0.04	<0.00050	<0.00050 (0.00050)	40
Total Copper	0.04	<0.010	<0.010 (0.010)	40
Total Lead	0.12	<0.0050	<0.00050 (0.00050)	120
Total Manganese	0.05	0.384	0.384 (0.050)	50
Total Mercury	0.0004	<0.000050	<0.000050 (0.000050)	0.4 80
Total Nickel	0.08		<0.050 <0.050 (0.050)	
Total Phosphorus	0.4	<0.30	<0.30 (0.3)	400
Total Selenium	0.02	<0.0050	<0.0050 (0.0050)	20
Total Silver	0.12	<0.0050	<0.0050 (0.0050)	120
Total Zinc	0.04	<0.30	<0.30 (0.3)	40
Microbiology				
E.coli	200	0	0 (0)	200,000
Volatile Organics				
<u>Parameter</u>	mg/L			ug/L
Benzene	0.002	<0.50	<0.50 (0.5)	2
Chloroform	0.002	1.1	1.1 (1.0)	2
1,2-Dichlorobenzene	0.0056	<0.50	<0.50 (0.5)	6
1,4-Dichlorobenzene	0.0068	<0.50	<0.50 (0.5)	7
Cis-1,2-Dichloroethylene	0.0056	<0.50	<0.50 (0.5)	6
Trans-1,3-Dichloropropylene	0.0056	<0.50	<0.50 (0.5)	6
Ethyl Benzene	0.002	<0.50	<0.50 (0.5)	2
Methylene Chloride	0.0052			5
1,1,2,2-Tetrachloroethane	0.017	<0.50	<0.50 (0.5)	17
Tetrachloroethylene	0.0044	<0.50	<0.50 (0.5)	4
Toluene	0.002	0.56	0.56 (0.5)	2
Trichloroethylene	0.0076	<0.50	<0.50 (0.5)	8
Total Xylenes	0.0044	<1.1	<1.1 (1.1)	4

HYDROLOGICAL REVIEW SUMMARY

Semi-Volatile Organics		Sample Result (mg/L)	Sample Result with upper RDL included (mg/L)	
Di-n-butyl Phthalate	0.015	<1.0	<1.0 (1.0)	5
Bis (2-ethylhexyl) Phthalate	0.0088	<2.0	<2.0 (2.0)	8.8
3,3'-Dichlorobenzidine	0.0008	<0.40	<0.40 (0.40)	0.8
Pentachlorophenol	0.002	<2.0	<2.0 (2.0)	2
Total PAHs	0.002	<1.7	<1.7 (1.7)	2
PCBs	0.0004	<0.040	<0.040 (0.040)	0.4
Misc Parameters				
Nonylphenols	0.001	<1.0	<1.0 (1.0)	1
Nonylphenol Ethoxylates	0.01	<2.0	<2.0 (2.0)	10

Sample Collected: February 18, 2022

Temperature:1.9°C

Consulting Firm that prepared Hydrological Report: <u>Grounded Engineering Inc.</u>

Qualified Professional who completed the report summary: _____Matthew Bielaski, P.Eng., QP_{RA-ESA}

Qualified Professional who completed the report summary:

Date & Stamp

HYDROGEOLOGICAL REVIEW REPORT

PREPARED FOR:

Tenblock 30 Soudan Avenue, Suite 200 Toronto, ON M4S 1V6

ATTENTION: Matthew Kelling

48 Grenoble Drive | Toronto, Ontario

Grounded Engineering Inc.

File No. 21-195

Issued March 10, 2022

Revised February 3, 2023

Executive Summary

Grounded Engineering Inc. (Grounded) was retained by Tenblock to conduct a Hydrogeological Review for the proposed redevelopment of 48 Grenoble Drive in Toronto, Ontario (site). The conclusions of the investigation are summarized as follows:

Development Information

Current Development						
		Below Grade Levels				
Development Phase	Above Grade		Lowest F	Approximate		
	Levels	Level #	Depth (m)	Elevation (masl)	Base of Footings (masl)	
1 Building	9	1	Unknown	Unknown	Unknown	

Proposed Development								
			v Grade Levels					
Development Phase	Above Grade		Lowest F	Lowest Finished Floor				
	Levels	Level #	Depth (m)	Elevation (masl)	Base of Footings (masl)			
1 Building (2 towers and associated podium)	Podium - 6 Tower A - 39 Tower B - 39	2	7.5	120.0	118.5			

Site Conditions

Stratigraphy				
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)
Fill	Aquifer	0.0 - 3.1	127.5 - 124.4	1.0 × 10 ^{-5***}
Upper Sands	Aquifer	3.1 - 6.9	124.4 - 120.6	3.6 × 10 ^{-6**}
Upper Glacial Till	Aquifer	6.9 - 20.2	120.6 - 107.3	5.5 × 10 ^{-8*}
Silts and Clays	Aquitard	20.2 - 26.3	107.3 - 101.2	1.6 × 10 ^{-8*}
Lower Sands	Aquifer	26.3 - 36.7	101.2 - 90.8	1.5 × 10 ^{-6*}
Lower Glacial Till	Aquifer	36.7 - 39.7	90.8 - 87.8	1.0 × 10 ^{-7***}

^{*}Indicates conductivity was calculated by Slug Test

^{***}Indicates conductivity was estimated using typical published values from Freeze and Cherry (1979)

Maximum Groundwater Elevation		
Monitoring Well ID	Depth Below Grade (m)	Elevation (masl)
BH1	13.1	114.2
BH2	15.2	112.0
ВН3	16.2	114.8
BH4	14.8	113.1
BH5	10.6	118.2

^{**}Indicates conductivity was estimated using grain size analysis

Maximum Groundwater Elevation		
BH6	17.5	109.6
ВН7	30.2	97.3
BH8	30.7	98.4
BH9	30.4	97.5

Groundwater Quali	ity			
Sample ID	Sample Date	Sample Expiry Date	City of Toronto Storm Sewer Limits	City of Toronto Sanitary and Combined Sewer Limits
SW-UF-BH2	Feb 16, 2022	Nov 16, 2022	Exceeds	Meets

Groundwater Control

Stored Groundwater (pre-excavation/dewatering)						
Volume of Excavation (m³)	Volume of Excavation Below	Volume of Sto	red Groundwater	Volume of Available Groundwater		
	Water Table (m ³)	(m³)	(L)	(m³)	(L)	
45,240	19,793	8,000	8,000,000	5,800	5,800,000	

Short Term (Construction) Groundwater Quantity - Safety Factor of 1.5 Used							
Groundwate	er Seepage	Design Rainfall Event (25mm)		Total Daily Water Takings			
L/day	L/min	L/day	L/min	L/day	L/min		
105,000	72.9	142,000	98.6	247,000	171.5		

Long Term (Permanent) Groundwater Quantity - Safety Factor of 1.5 Used							
Scenario	Groundwater Seepage Infiltration Design Rainfall Event (25mm)			Total Daily Water Takings			
	L/day	L/day	L/min	L/day	L/day	L/min	
Drained Structure	105,000	72.9	22,000	15.3	127,000	88.2	
Fully Watertight Structure	0	0	0	0	0	0	

Maximum Zone of Influence (m)			
Site Short Term (Construction) Long Term (Permanent)		Long Term (Permanent)	
48 Grenoble Dr.	Soldier Pile & Lagging – 16 m	Soldier Pile & Lagging – 14 m Fully Watertight Structure – 0 m	

Maximum Potential Settlement		
Site Short Term (Construction) Long Term (Permanent)		
48 Grenoble Dr.	Solider Pile & Lagging – 6 mm	Solider Pile & Lagging – 1 mm Fully Watertight Structure – 0 mm

Regulatory Requirements	Drained Structure	Fully Watertight Structure
Environmental Activity and Sector Registry (EASR) Posting	Required	Required
Short Term Permit to Take Water (PTTW)	Not Required	Not Required
Long Term Permit to Take Water (PTTW)	Required	Not Required
Short Term Discharge Agreement City of Toronto	Required	Required
Long Term Discharge Agreement City of Toronto	Required	Not Required

TABLE OF CONTENTS

1	INTRODU	ICTION	1
2	STUDY A	REA MAP	3
3	GEOLOG\	Y AND PHYSICAL HYDROGEOLOGY	3
4	MONITOR	RING WELL INFORMATION	4
5	GROUND	WATER ELEVATIONS	5
6	AQUIFER	TESTING	6
	6.1 Pu	MP TEST	6
	6.2 SIN	NGLE WELL RESPONSE TEST (SLUG TEST)	6
	6.3 Soi	IL GRAIN SIZE DISTRIBUTION	6
	6.4 LIT	ERATURE	7
7	WATER Q	QUALITY	8
8	PROPOSE	ED CONSTRUCTION METHOD	8
9	PRIVATE	WATER DRAINAGE SYSTEM (PWDS)	9
10	GROUND	WATER EXTRACTION AND DISCHARGE	10
11	EVALUAT	TION OF IMPACT	12
	11.1	Zone of Influence (ZOI)	12
	11.2	LAND STABILITY	13
	11.3	CITY'S SEWAGE WORKS	13
	11.4	Natural Environment	
	11.5	LOCAL DRINKING WATER WELLS	
	11.6	CONTAMINATION SOURCE	14
12	PROPOSE	ED MITIGATION MEASURES AND MONITORING PLAN	14
13	LIMITATI	ONS	15
	13.1	REPORT USE	15
14	CL OSURE	=	16

FIGURES

Figure 1 - Study Area Map

Figure 2 – Borehole and Monitoring Well Location Plan (Existing Condition)

Figure 3 – Borehole and Monitoring Well Location Plan (Proposed Condition)

Figure 4 - Subsurface Cross-Section

APPENDICES

Appendix A - Borehole Logs

Appendix B - Aquifer Response Tests

Appendix C - Grain Size Analysis

Appendix D - HydrogeoSieveXL Data

Appendix E - Laboratory Certificate of Analysis

Appendix F – Finite Element Model

Appendix G - Dewatering Calculations

1 Introduction

Tenblock has retained Grounded Engineering Inc. ("Grounded") to provide hydrogeological engineering design advice for their proposed development at 48 Grenoble Drive, in Toronto, Ontario.

Property Information	
Location of Property	48 Grenoble Drive, Toronto, Ontario, M3C 1C8
Ownership of Property	Tenblock
Property Dimensions (m)	Approximately 96 by 70 (irregular shape)
Property Area (m²)	Approximately 6,749

Existing Development	
Number of Building Structures	1 Building
Number of Above Grade Levels	9
Number of Underground Levels	1
Sub-Grade Depth of Development (m)	Unknown
Sub-Grade Area (m²)	Approximately 1,200
Land Use Classification	Residential

Proposed Development	
Number of Building Structures	1 Building (2 towers and associated podium)
Number of Above Grade Levels	Towers: Tower A – 39 & Tower B - 39 Podium: 6
Number of Underground Levels	2
Sub-Grade Depth of Development (m)	7.5
Sub-Grade Area (m²)	Approx. 5,655 (65 m x 87 m)
Land Use Classification	Residential with Parkland Conveyance

Qualified Person and Hydrogeological Review Information			
Qualified Person	Matthew Bielaski, PEng, QP _{ESA-RA}		
Consulting Firm	Grounded Engineering Inc.		
Date of Hydrogeological Review	February 3, 2023		
	Review of MECP Water Well Records for the area		
	 Review of geological information for the area 		
	 Review of topographic information for the area 		
	 Advancement of 3 environmental boreholes to a maximum depth of 1 m (BH10 to BH12) along the proposed parkland conveyance, with no monitoring wells. 		
	 Advancement of 6 boreholes to an approximate depth of 20 m, which were instrumented with monitoring wells (BH1 to BH6) 		
Scope of Work	 Advancement of 3 boreholes to an approximate depth of 45 m, which were instrumented with monitoring wells (BH7 to BH9) 		
	 Completion of a 24 hour pump test (if feasible) 		
	 Completion of slug tests in all available monitoring wells 		
	 Groundwater elevation monitoring for three (3) months 		
	 Groundwater sampling and analysis to the City of Toronto Sewer Use Limits 		
	 Assessment of groundwater controls and potential impacts 		
	 Report preparation in accordance with Ontario Water Resources Act, Ontario Regulation 387/04 and Toronto Municipal Code Chapter 681 		

General Hydrogeological Characterization			
Property Topography	The site has an approximate ground surface elevation of 127.5 masl.		
Local Physiographic Features	The site is composed of sandy silt till and clayey silt till deposits, as well as a clayey silt strata and lower sands.		
Regional Physiographic Features	The West St Lawrence Lowland consists of a limestone plain (elevation 200–250 masl) that is separated by a broad, shale lowland from a broader dolomite and limestone plateau west of Lake Ontario. This plateau is bounded by the Niagara Escarpment. From the escarpment the plateau slopes gently southwest to lakes Huron and Erie (elevation 173 masl). Glaciation has mantled this region with several layers of glacial till (i.e., an unsorted mixture of clay, sand, etc.), the youngest forming extensive, undulating till plains, often enclosing rolling drumlin fields.		
Watershed	The site is located within the Don River Watershed. Locally, groundwater is anticipated to flow East towards a branch of the Don River.		

General Hydrogeological Characterization

Surface Drainage

Surface water is expected to flow towards municipal catch basins located on or adjacent to the site, via Grenoble Dr and Deauville Ln to the South and East.

2 Study Area Map

A map has been enclosed which shows the following information:

- All monitoring wells identified on site
- All monitoring wells identified off site within the study area
- All boreholes identified on site
- All buildings identified on site and within the study area
- The property boundaries of the site
- Any watercourses and drainage features within the study area.

3 Geology and Physical Hydrogeology

The site stratigraphy, including soil materials, composition and texture are presented in detail on the borehole logs in Appendix A. A summary of stratigraphic units that were encountered at the site are as follows:

Site Stratigraphy				
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)
Fill	Aquifer	0.0 - 3.1	127.5 – 124.4	1.0 × 10 ^{-5***}
Upper Sands	Aquifer	3.1 - 6.9	124.4 – 120.6	3.6 × 10 ^{-6**}
Upper Glacial Till	Aquifer	6.9 – 20.2	120.6 - 107.3	5.5 × 10 ^{-8*}
Silts and Clays	Aquitard	20.2 - 26.3	107.3 – 101.2	1.6 × 10 ^{-8*}
Lower Sands	Aquifer	26.3 - 36.7	101.2 - 90.8	1.5 × 10 ^{-6*}
Lower Glacial Till	Aquifer	36.7 – 39.7	90.8 - 87.8	1.0 × 10 ^{-7***}

^{*}Indicates conductivity was calculated by Slug Test

^{**}Indicates conductivity was estimated using grain size analysis

^{***}Indicates conductivity was estimated using typical published values from Freeze and Cherry (1979)

Bedrock			
Stratum	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)
Weathered	39.6 - 41.6	87.9 - 85.8	1.0 × 10 ⁻⁶
Sound	41.6 - 46.1	85.8 - 81.3	2.5 × 10 ⁻⁷

Surface Water		
Surface Water Body	Distance from site (m)	Hydraulically Connected to Property (yes/no)
Don River	500 (East)	No

4 Monitoring Well Information

Well ID	Well Diameter (mm)	Ground Surface (masl)	Top of Screen (masl)	Bottom of Screen (masl)	Screened Geological Unit
BH1	51	126.9	114.7	111.7	Upper Glacial Till
BH2	51	127.1	111.2	108.2	Upper Glacial Till
BH3	51	127.7	112.4	109.4	Upper Glacial Till
BH4	51	127.6	110.9	107.8	Silts and Clays
BH5	51	127.6	113.9	110.9	Upper Glacial Till
BH6	51	125.2	110.0	106.9	Silts and Clays
BH7	51	127.1	87.3	84.2	Bedrock
BH8	51	127.5	97.0	94.0	Lower Sands
ВН9	51	127.4	84.3	81.3	Bedrock

5 Groundwater Elevations

Well ID	Groundwater Elevation (masl)						
	Mar 4, 2022	Mar 14, 2022	Mar 25, 2022	Apr 18, 2022	May 6, 2022	May 20, 2022	Sept 23, 2022
BH1	113.8	113.9	114.0	114.2	114.2	114.1	114.0
BH2	111.9	111.7	111.6	111.6	111.7	-	112.0
внз	111.5	111.8	112.2	113.2	113.2	114.1	114.8
BH4	112.8	112.8	112.9	112.9	112.9	112.9	113.1
BH5	117.6	117.7	118.0	118.0	118.1	118.2	118.2
BH6	107.5	107.8	108.1	108.5	108.6	109.0	109.6
BH7	96.9	97.0	97.0	97.3	97.2	97.2	97.1
BH8	96.4	96.5	96.7	96.5	96.6	96.7	98.4
ВН9	-	-	97.4	97.3	97.4	97.4	97.3

The groundwater elevations were collected using a Solinst Oil/Water Interface Meter (model 122) with a 60 m long tape.

Based on local information, the design groundwater table for engineering purposes is Elev. 123 ±m.

Groundwater levels fluctuate with time depending on the amount of precipitation and surface runoff and may be influenced by known or unknown dewatering activities at nearby sites.

Per the City of Toronto, Toronto Water Infrastructure Management's Foundation Drainage Policy (November 1, 2021), long-term discharge of foundation drainage to the City's sanitary sewer system will not be permitted. A temporary, emergency foundation drainage connection to the City's sewer systems **may** be granted if the lowest elevation of any proposed structure is higher than the Maximum Anticipated Groundwater Level at the site. The MAGWL was determined based on the following equation:

Maximum Anticipated GWL = Peak Static GWL Observed + Fluctuation Allowance

The Peak Static GWL Observed was at Elev. 118.2 ±m in BH5 on May 20, 2022. The Fluctuation Allowance based on the Option 1 - Table 1 approach, is 1.3 m. Therefore, the MAGWL for the site is estimated at Elev. 119.5 m.

As proposed foundations are above the observed maximum groundwater level at the Property, the elevation of the lowest structure will be above the MAGWL. As such, long term discharge of

groundwater to the City's sewer systems may be permitted. Pre-consultation with Toronto Water is encouraged to determine the feasibility for a Long-Term Storm/Sanitary Discharge Exemption.

6 Aquifer Testing

6.1 Pump Test

A pumping test was not completed at the site. Please note however that in-situ single well response tests were completed on each of the monitoring wells installed at the site.

6.2 Single Well Response Test (Slug Test)

The hydraulic conductivities from the monitoring wells were determined based on slug tests (single-well response tests). These tests involve rapid removal of water or addition of a "slug" which displaces a known volume of water from a single well, and then monitoring the water level in the well until it recovers. The results of the slug tests were analyzed using the Bouwer and Rice method (1976).

The hydraulic properties of the strata applicable to the site are as follows:

Well ID	Well Screen Elevation (masl)	Screened Geological Unit	Hydraulic Conductivity (m/s)
BH1	114.7 - 111.6	Upper Glacial Till	2.5×10^{-8}
BH2	111.2 - 108.2	Upper Glacial Till	2.7 × 10 ⁻⁷
BH4	112.4 - 109.4	Silts and Clays	1.0 × 10 ⁻⁸
BH5	110.9 - 107.8	Upper Glacial Till	2.5 × 10 ⁻⁸
BH6	113.9 - 110.9	Silts and Clays	2.5 × 10 ⁻⁸
BH7	110.0 - 106.9	Bedrock	2.5 × 10 ⁻⁷
BH8	87.3 - 84.2	Lower Sands	1.5 × 10 ⁻⁶
BH9	97.0 - 94.0	Bedrock	2.3 × 10 ⁻⁸

6.3 Soil Grain Size Distribution

The hydraulic conductivities of various soil types can also be estimated from grain size analyses. An assessment of the grain sizes was conducted using the excel-based tool, HydrogeoSieve XL (HydrogeoSieve XL ver.2.2, J.F. Devlin, University of Kansas, 2015). HydrogeoSieve XL compares the results of the grain size analyses against fifteen (15) different analytical methods.

Given our experience in the area as well as published literature, some of the geometric means provided for the soil were biased low by one or more methods. In these instances, the values

determined by these methods were excluded from the mean. The table below illustrates the hydraulic conductivity values estimated from the mean of the analytical methods where the soil met the applicable analysis criteria.

Sample ID	Soil Description	Applicable Analysis Methods	Hydraulic Conductivity (m/s)
BH1 SS4	Upper Sands	Hazen, Slichter, Beyer, Sauerbrei, Kruger, Zunker, Zamarin, Barr, Alyamani and Sen, Krumbein and Monk	3.6 × 10 ⁻⁶
BH2 SS8	Upper Glacial Till	Hazen, Slichter, Beyer, Sauerbrei, Kruger, Zunker, Zamarin, Barr, Alyamani and Sen, Krumbein and Monk	1.7 × 10 ⁻⁸
BH3 SS12	Upper Glacial Till	Hazen, Slichter, Beyer, Sauerbrei, Kruger, Zunker, Zamarin, Barr, Alyamani and Sen, Krumbein and Monk	1.0 × 10 ⁻⁷
BH4 SS15	Silts and Clays	Hazen, Slichter, Beyer, Sauerbrei, Kruger, Zunker, Zamarin, Barr, Alyamani and Sen, Krumbein and Monk	1.0 × 10 ⁻⁸
BH7 SS17	Silts and Clays	Hazen, Slichter, Beyer, Sauerbrei, Kruger, Zunker, Zamarin, Barr, Alyamani and Sen, Krumbein and Monk	3.3 × 10 ⁻⁹
BH7 SS22	Lower Sands	Hazen, Slichter, Beyer, Sauerbrei, Kruger, Zunker, Zamarin, Barr, Alyamani and Sen, Krumbein and Monk	4.6 × 10 ⁻⁹
BH7 SS26	Lower Glacial Till	Hazen, Slichter, Beyer, Sauerbrei, Kruger, Zunker, Zamarin, Barr, Alyamani and Sen, Krumbein and Monk	3.6 × 10 ⁻⁸

The results of the analyses are presented in Appendix D.

6.4 Literature

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata investigated at the site are:

Stratum/Formation	Hydraulic Conductivity (m/s)
Earth Fill	10 ⁻² to 10 ⁻⁶
Upper Sands	10 ⁻² to 10 ⁻⁷
Upper Glacial Till	10 ⁻⁶ to 10 ⁻¹²
Silts and Clays	10 ⁻⁶ to 10 ⁻¹²
Lower Sands	10 ⁻² to 10 ⁻⁷
Lower Glacial Till	10 ⁻⁶ to 10 ⁻¹²
Bedrock (Shale)	10 ⁻⁶ to 10 ⁻¹³

7 Water Quality

One (1) unfiltered groundwater sample was collected and analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and or Canadian Association for Laboratory Accreditation.

The sample was collected directly from monitoring well BH2 on February 16, 2022. The sample was analyzed for the following parameters:

- City of Toronto Municipal Code Chapter 681 Table 1 Limits for Sanitary and Combined Sewers Discharge
- City of Toronto Municipal Code Chapter 681 Table 2 Limits for Storm Sewer Discharge

The groundwater sample **exceeded** the **Limits for Storm Sewer Discharge** for the following parameters:

- Total Suspended Solids (Limit 15 mg/L, Result 246 mg/L)
- Total Cyanide (Limit 0.02 mg/L, Result 0.0711 mg/L)
- Total Manganese (Limit 0.05 mg/L, Result 0.384 mg/L)
- BOD (Limit 15 mg/L, Result 40.5 mg/L)

The groundwater sample **met** the **Limits for Sanitary and Combined Sewer Discharge** for all parameters analyzed.

A true copy of the analysis report, Certificate of Analysis and a chain of custody record for the sample are enclosed.

8 Proposed Construction Method

The proposed shoring methodology at the site is currently undetermined. For the purposes of this report, numerical analyses were conducted employing conventional soldier piling and lagging in order to determine a "worst-case scenario" with respect to dewatering volumes and groundwater seepage at the site.

For design purposes, the stabilized groundwater table is at about Elev. 123 \pm m. The lowest (P2) FFE is at about Elev. 120.0 m. Therefore,

- Bulk excavation will extend down to the elevation of the prevailing groundwater table;
- Foundation excavations will extend below the prevailing groundwater table; and
- Base of footings is estimated at 118.5 masl which is conservative for the present purposes. This depth may be revised once the final structural design becomes available for review.
- Foundation excavations are anticipated to extend to 119.5 masl, which will penetrate the upper glacial till and may yield moderate groundwater seepage.

Prior to excavation, positive dewatering to lower the groundwater table will be required to facilitate construction as well as to maintain the integrity of the subgrade for foundation and slab-on-grade support. The water level must be kept at least 1.2 m below the lowest excavation elevation during construction. Failure to dewater prior to excavation will result in unrecoverable disturbance of the subgrade, which will render advice provided for undisturbed subgrade conditions inapplicable.

Dewatering will take some time to accomplish prior to the start of excavation. Stored water within the excavation will need to be considered prior to excavation/dewatering.

It is recommended that a professional dewatering contractor be consulted to review the subsurface conditions and to design a site-specific dewatering system. It is the dewatering contractor's responsibility to assess the factual data and to provide recommendations on dewatering system requirements.

The proposed structures may consist of either drained foundations or a fully leak tight structure. Per the City of Toronto, Toronto Water Infrastructure Management's Foundation Drainage Policy (November 1, 2021), long-term discharge of groundwater to the City's sewer systems is unlikely to be permitted. Pre-consultation with Toronto Water is encouraged to determine the feasibility for a Long-Term Storm/Sanitary Discharge Exemption, as applicable.

The City of Toronto will require Discharge Agreements in the short and long terms, if any water is to be discharged to the storm or sanitary sewers. It should be noted that securing a permit to take water on a permanent basis may not be supported by regulatory agencies.

9 Private Water Drainage System (PWDS)

If the proposed development consists of drained foundations, then a private water drainage system will be required. The total sub floor drain area will be approximately 5,655 m² based on the drawings which have been provided.

If the development is designed with a private water drainage system, the drainage system is a critical structural element since it keeps water pressure from acting on the basement walls and floor slab. As such, the sump that ensures the performance of this system must have a duplexed pump arrangement for 100% pumping redundancy and these pumps must be on emergency power. The size of the sump should be adequate to accommodate the estimated groundwater seepage. It is anticipated that the groundwater seepage can be controlled with typical, widely available, commercial/residential sump pumps.

If the proposed development is designed as a watertight structure, then a private water drainage system will not be required. However, the structure must then be designed to resist hydrostatic pressure and uplift forces. A connection to the City's sewer for emergency repair services is recommended.

10 Groundwater Extraction and Discharge

Numerical analyses were conducted for both short term and long term dewatering scenarios. The modeling was conducted using computer software, which deploys the finite element modelling method. The Finite Element Model (FEM) for groundwater seepage indicates the short term (construction) and long term (permanent) dewatering requirements as provided below. The finite element model results are presented in Appendix E.

The groundwater seepage estimates, which have been provided, represent the steady state groundwater seepage. There will be an initial drawdown of the groundwater before a steady state condition is reached. The rate of the initial drawdown, and therefore discharge, is dependent on the dewatering contractor and how the groundwater is being dealt with at the site. An estimated initial volume of stored groundwater which will require removal before steady state is reached has been provided below.

Please note that if excavation is exposed to the elements, storm water will have to be managed. The short term control of groundwater should consider stormwater management from rainfall events. A dewatering system should be designed to consider the removal of rainfall from excavation. A design storm of 25 mm has been used in the quantity estimates.

As required by Ontario Regulation 63/16, a plan for discharge must consider the conveyance of storm water from a 100-year storm. The additional volume that will be generated in the occurrence of a 100-year storm event is approximately 532,000 L.

Stored Groundwater (pre-excavation/dewatering)							
Volume of	Volume of Excavation Below	Volume of Sto	red Groundwater	Volume of Available Groundwater			
Excavation (m ³)	Water Table (m ³)	(m³)	(L)	(m³)	(L)		
45,240	19,793	8,000	8,000,000	5,800	5,800,000		

Short Term (Construction) Groundwater Quantity – Safety Factor of 1.5 Used						
Groundwater Seepage Design Rainfall Event (25mm) To				Total Daily Wa	otal Daily Water Takings	
L/day	L/min	L/day	L/min	L/day	L/min	
105,000	72.9	142,000	98.6	247,000	171.5	

Long Term (Permanent) Groundwater Quantity – Safety Factor of 1.5 Used							
Scenario -	Groundwater Seepage Infiltration Design Rainfall Event (25mm)				Total Daily Water Takings		
-	L/day	L/day	L/min	L/day	L/day	L/min	
Drained Structure	105,000	72.9	22,000	15.3	127,000	88.2	
Fully Watertight Structure	0	0	0	0	0	0	

Regulatory Requirements	Drained Structure	Fully Watertight Structure
Environmental Activity and Sector Registry (EASR) Posting	Required	Required
Short Term Permit to Take Water (PTTW)	Not Required	Not Required
Long Term Permit to Take Water (PTTW)	Required	Not Required
Short Term Discharge Agreement City of Toronto	Required	Required
Long Term Discharge Agreement City of Toronto	Required	Not Required

Please note:

- The native soils must be dewatered a minimum of 1.2 m below the footing elevation prior to excavation to preserve the in-situ integrity of the native soils during construction dewatering activities. It is anticipated that the groundwater table will rise to the elevation of the subfloor drainage in the event of a drained structure or the waterproofing in the event of a leak tight structure.
- The proposed pump schedule for short term construction dewatering has not been completed. As such, the actual peak short term discharge rate is not available at the time of writing this report. The pump schedule must be specified by the dewatering contractor retained.
- The proposed pump schedule for long term permanent drainage has not been completed.
 As such the actual peak long term discharge rate is not available at the time writing of this report. The pump schedule must be specified by the mechanical consultant.
- A leak-tight structure (structure that has not included a private water drainage system) has been considered as part of the proposed development at this time.
- On-site containment has been considered as part of the proposed development. The proposed development will have an underground infiltration gallery for onsite management of infiltrated stormwater. The infiltration gallery is located along the west portion of the Property and has an approximate capacity of 6.24 m³.

Per the City of Toronto, Toronto Water Infrastructure Management's Foundation Drainage Policy (November 1, 2021), long-term discharge of groundwater to the City's sewer systems is unlikely to be permitted. Pre-consultation with Toronto Water is encouraged to determine the feasibility for a Long-Term Storm/Sanitary Discharge Exemption, where applicable.

11 Evaluation of Impact

11.1 Zone of Influence (ZOI)

The Zone of Influence (ZOI) with respect to groundwater was calculated based on the estimated groundwater taking rate and the hydraulic conductivity of the unit which water will be taken at the Property.

The ZOI was calculated using the Sichardt equation below.

Equation: $R_0 =$

 $R_0 = 3000 * dH * K^{0.5}$

Where:

dH is the dewatering thickness (m)

K is the hydraulic conductivity (m/s)

Calculation:

The ZOI with respect to groundwater seepage within the Upper Sands at the site is:

$$R_0 = 3000*2.4 \text{ m*}(3.58 \text{ x } 10^{-6})^{0.5} \text{ m/s}$$

$$R_0 = 14 \pm m$$

The ZOI with respect to groundwater seepage within the Upper Glacial Till at the site is:

$$R_0 = 3000*3.3 \text{ m}*(5.55 \text{ x } 10^{-8})^{0.5} \text{ m/s}$$

$$R_0 = 2 \pm m$$

The ZOI with respect to groundwater construction dewatering at the site is 14 m. This represents the maximum zone of influence with respect to groundwater at the site.

If all underground structures are constructed to be fully watertight, the ZOI with respect to groundwater seepage in the long term is 0 m.

11.2 Land Stability

The impacts to land stability of the proposed short term and long term dewatering at the site on adjacent structures are summarized as follows:

- The proposed dewatering at the subject site locally lowers the groundwater table within the ZOI by a maximum of 5.7 m. This drawdown would create an increase in effective stress of approximately 43 kPa in the native soils.
- Based on the change in effective stress and the compressibility of the soil subjected to that change, the proposed dewatering activities will induce a maximum 6 mm of additional settlement in the adjacent soils.
- The maximum induced settlement occurs directly adjacent to the proposed excavation and decreases in a nonlinear fashion with distance away from the excavation.
- For the structures within the public realm adjacent to the site, the dewatering-induced settlement is calculated to be 6 mm or less (depending on the depth of the structure).

On this basis, the impact of the proposed dewatering on the existing adjacent structures is considered by Grounded to be within acceptable limits.

11.3 City's Sewage Works

Negative impacts to City's sewage works may occur in terms of the quantity or quality of the groundwater discharged. This report provided the estimated quantity of the water discharge. However, this report does not speak to the sewer capacities. The sewer capacity analysis is provided under a separate cover by the civil consultant.

The quality of the proposed groundwater discharge is provided in Section 7. As noted in that section, the groundwater sample exceeded the Limits for Storm Sewer Discharge and met the Limits for Sanitary and Combined Sewer Discharge.

As such, additional treatment will be required before the water can be discharged to the Storm Sewer to avoid impacts to the City's sewage works caused by groundwater quality. Additional treatment will not be required before the water can be discharged to the Sanitary and Combined Sewer.

Per the City of Toronto, Toronto Water Infrastructure Management's Foundation Drainage Policy (November 1, 2021), long-term discharge of groundwater to the City's sewer systems is unlikely to be permitted. Discharge to the City's sewers may only be accomplished via a Long-Term Storm/Sanitary Discharge Exemption.

11.4 Natural Environment

There are no natural waterbodies within the ZOI that will be affected by the proposed construction dewatering or permanent drainage. Any groundwater which will be taken from the site will be

discharged (if required) into the City's sewer systems and not into any natural water body. As such, there will be no impact to the natural environment caused by the water takings at the site.

11.5 Local Drinking Water Wells

The site is located within the municipal boundaries of the City of Toronto. The site and surrounding area are provided with municipal piped water and sewer supply. There is no use of the groundwater for water supply in this area of Toronto. As such, there will be no impact to drinking water wells.

11.6 Contamination Source

The site and immediately surrounding area currently consist mostly of residential and commercial areas. These land uses are not anticipated to be a source of potential contamination and are not expected to provide an Area of Potential Environmental Concern for the site. As such, the pumping of groundwater at the site is not anticipated to facilitate the movement of potential contaminants onto the site. Evaluation of the environmental condition of the site will be completed under a separate cover.

12 Proposed Mitigation Measures and Monitoring Plan

The extent of the negative impact identified in previous sections will be limited to the ZOI caused by the groundwater taking at the site.

As a result of dewatering and draining the soil, changes in ground water level have the potential to cause settlement based on the change in the effective stresses within the ZOI. Per Section 11.2 of this report, the impact of the proposed dewatering on the existing adjacent structures is considered by Grounded to be within acceptable limits. Groundwater quality and quantity monitoring during dewatering activities will be conducted, as outlined below:

- Monitoring of groundwater quality on an ongoing basis per the requirements of the City of Toronto Discharge Agreement and also at the discretion of the Toronto Water Environmental Monitoring & Protection Unit (Toronto Water EM&P).
- Daily monitoring and metering of groundwater taking/discharge volumes per the City of Toronto Discharge Agreement.
- Groundwater will be discharged at the rate specified in the Discharge Agreement as approved by the City. This rate will not be exceeded.
- Any additional storm water accumulated on the Property will be managed on site and discharged in a controlled manner, not in excess of the agreed upon maximum daily volumes set out in the Discharge Agreement.
- Reporting of groundwater quality and quantity per the requirements of the applicable regulatory bodies (City of Toronto for the Discharge Agreement and MECP for the EASR Posting/Permit to Take Water requirements).

- The dewatering system including any applicable treatment system will be reviewed and inspected by Toronto Water – EM&P prior to connection to the City's municipal sewer system and after installation before discharge commences.
- Vibration and settlement monitoring during construction will be part of the shoring monitoring program at the site, as required by the Ontario Building Code and applicable City of Toronto By-Laws.
- If settlement outside of the acceptable limits is observed, dewatering at the site will be temporarily suspended.
- A Professional Engineer will be called to the Property to evaluate site conditions, determine cause of settlement, and provide remedial action.

Both the temporary construction dewatering system and the permanent building drainage system (if applicable) must be properly installed and screened to ensure sediments and fines will not be removed which would cause loss of ground. This is typically a primary cause of dewatering related settlement.

13 Limitations

Natural occurrences, the passage of time, local construction, and other human activity all have the potential to directly or indirectly alter the subsurface conditions at or near the project site. Contractual obligations related to groundwater or stormwater control must be considered with attention and care as they relate this potential site alteration.

The hydrogeological engineering advice provided in this report is based on the factual observations made from the site investigations as reported. It is intended for use by the owner and their retained design team. If there are changes to the features of the development or to the scope, the interpreted subsurface information, geotechnical engineering design parameters, advice, and discussion on construction considerations may not be relevant or complete for the project. Grounded should be retained to review the implications of such changes with respect to the contents of this report.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Grounded accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

13.1 Report Use

The authorized users of this report are Tenblock and their design team, for whom this report has been prepared. Grounded Engineering Inc. maintains the copyright and ownership of this document. Reproduction of this report in any format or medium requires explicit prior

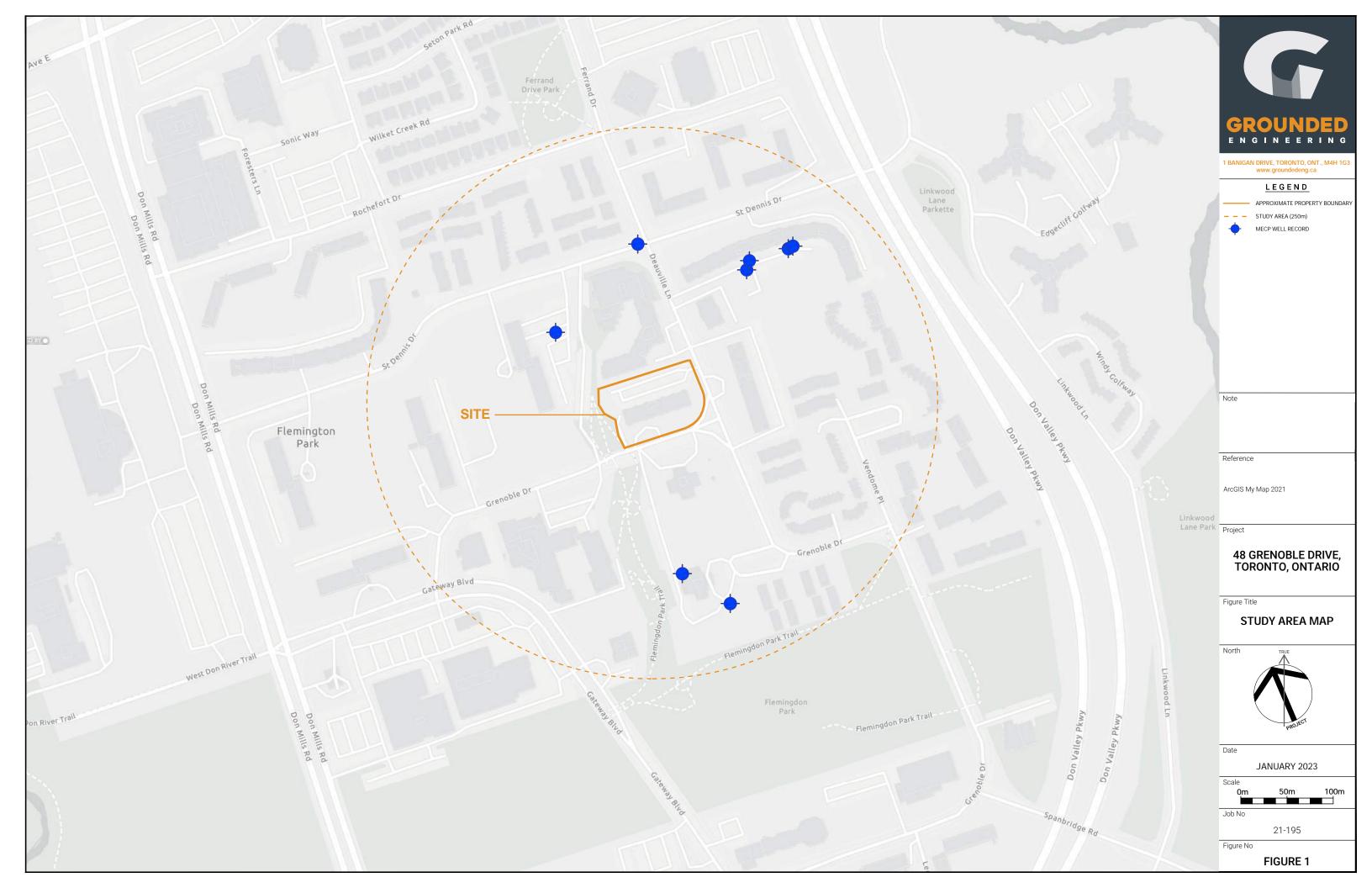
File No. 21-195 Page 15

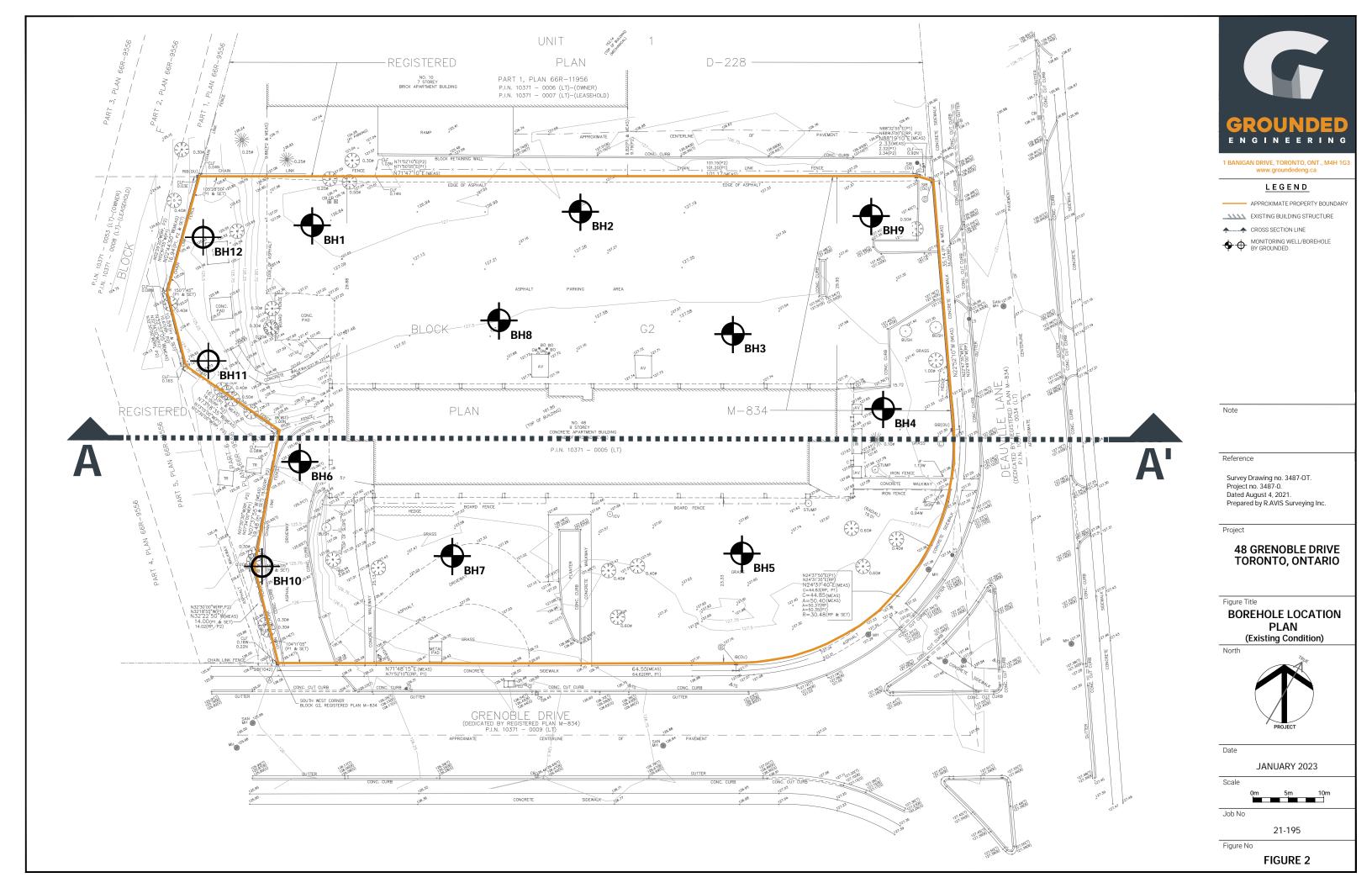
authorization from Grounded Engineering Inc. The City of Toronto may also make use of and rely upon this report, subject to the limitations as stated.

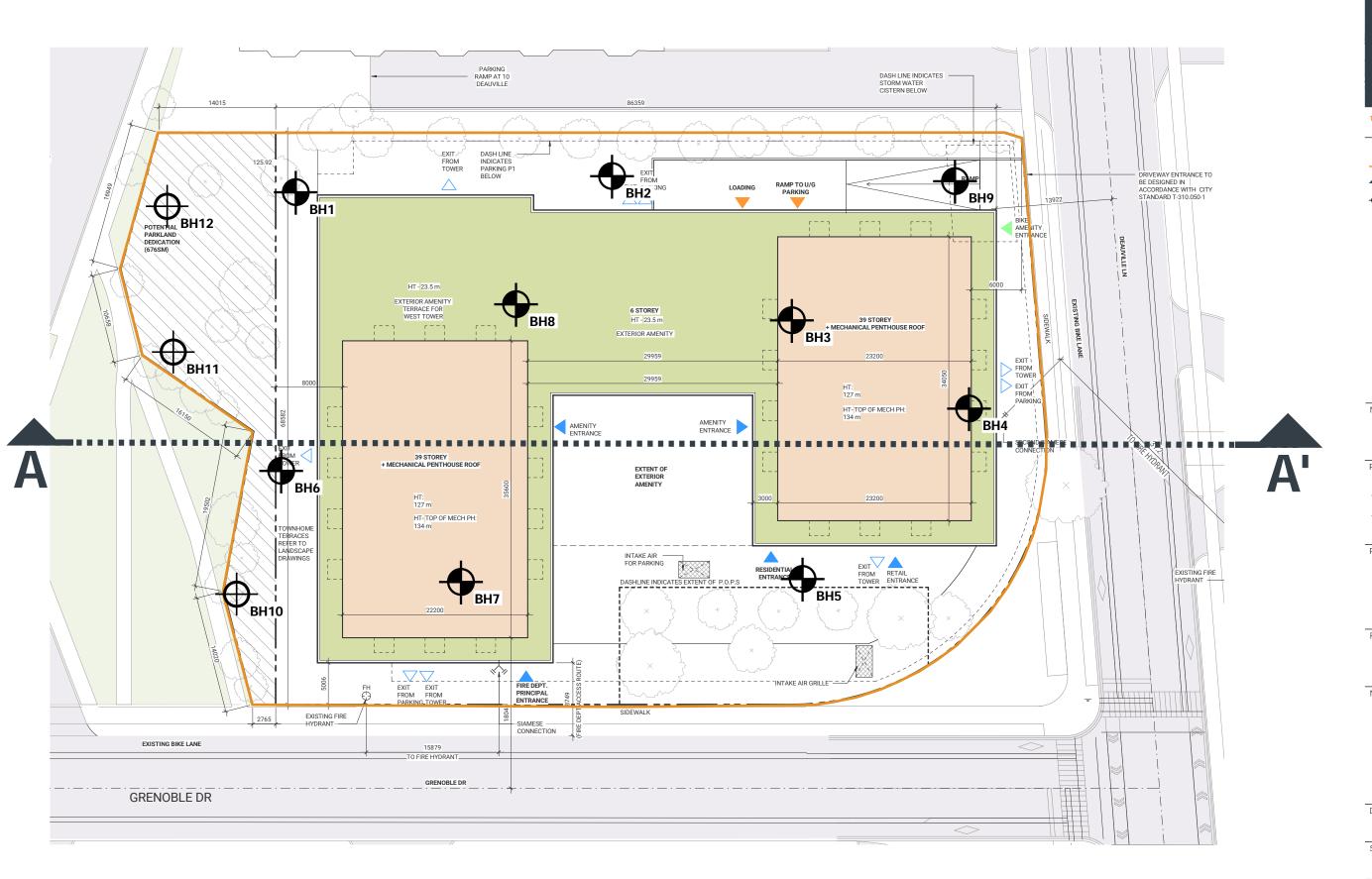
14 Closure

If there are any questions regarding the discussion and advice provided, please do not hesitate to contact our office. We trust that this report meets your requirements at present.

For and on behalf of our team,


Shelby Plant, BScE, MES, EIT Project Manager Matthew Bielaski, Peng, QP_{RA-ESA} Principal


100131738


File No. 21-195 Page 16

FIGURES

1 BANIGAN DRIVE, TORONTO, ONT., M4H 1G3 www.groundedeng.ca

LEGEND

------ APPROXIMATE PROPERTY BOUNDARY

CROSS SECTION LINE

MONITORING WELL/BOREHOLE BY GROUNDED

Note

Reference

Arch Drawings Project no. 211033. January 17, 2023 Prepared by Diamond Schmitt.

Project

48 GRENOBLE DRIVE TORONTO, ONTARIO

Figure Title

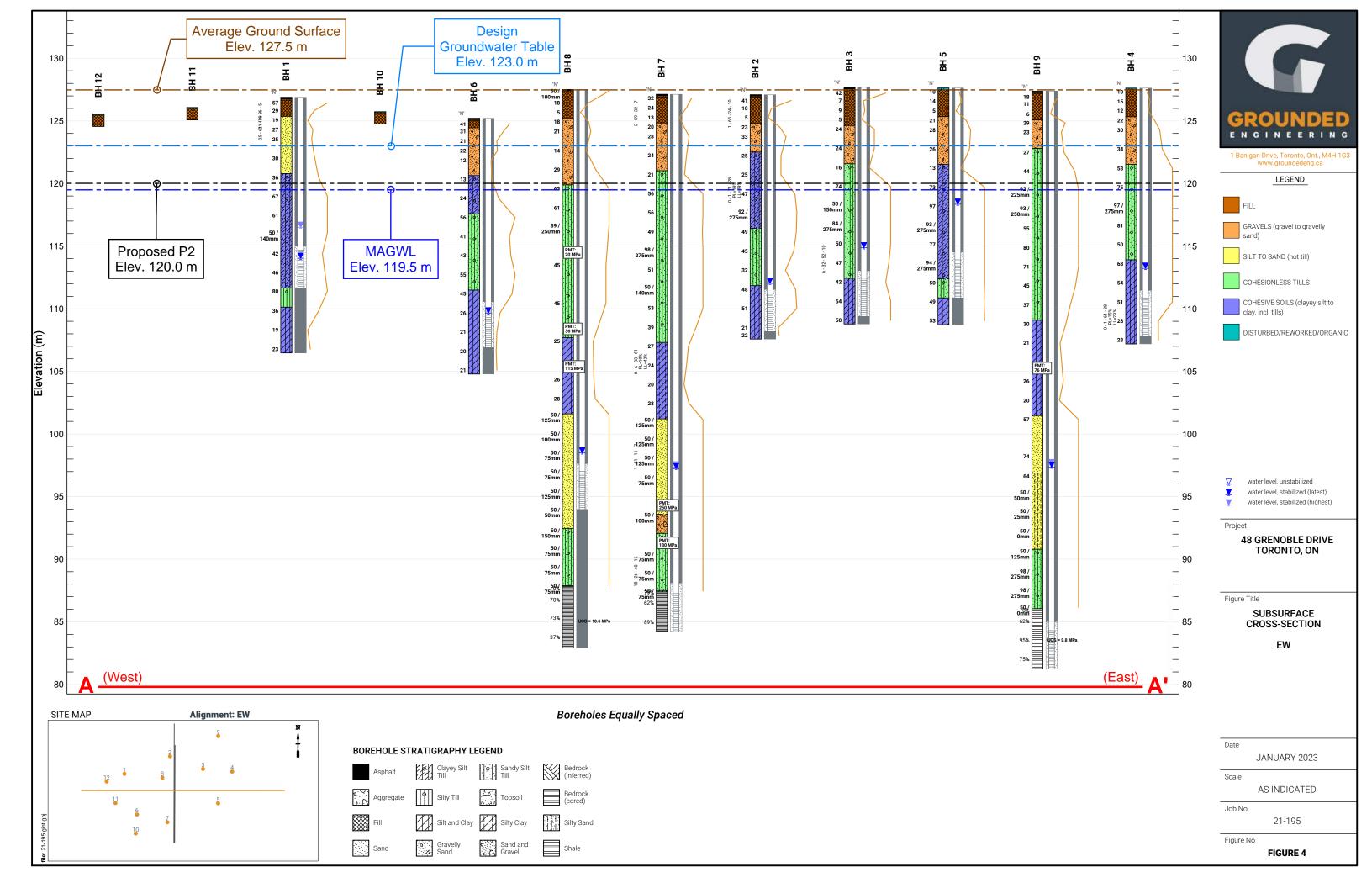
BOREHOLE LOCATION PLAN (Proposed Condition)

Date

JANUARY 2023

Scale

0m 5m 10m


Job No

21-195

Figure No

FIGURE 3

BY GROUNDED

APPENDIX A

SAMPLING/TESTING METHODS

SS: split spoon sample

AS: auger sample

GS: grab sample

FV: shear vane

DP: direct push

PMT: pressuremeter test

ST: shelby tube

CORE: soil coring RUN: rock coring

SYMBOLS & ABBREVIATIONS

MC: moisture content

LL: liquid limit

PL: plastic limit

PI: plasticity index

y: soil unit weight (bulk)

G_s: specific gravity

Su: undrained shear strength

∪ unstabilized water level

▼ 1st water level measurement

2nd water level measurement most recent

water level measurement

ENVIRONMENTAL SAMPLES

M&I: metals and inorganic parameters

PAH: polycyclic aromatic hydrocarbon

PCB: polychlorinated biphenyl VOC: volatile organic compound

PHC: petroleum hydrocarbon

BTEX: benzene, toluene, ethylbenzene and xylene

PPM: parts per million

FIELD MOISTURE (based on tactile inspection)

DRY: no observable pore water

MOIST: inferred pore water, not observable (i.e. grey, cool, etc.)

WET: visible pore water

0011000	
COMPOSIT	ION

Term	% by weight
trace silt	<10
some silt	10 - 20
silt y	20 - 35
sand and silt	>35

COHESIONLESS

Relative Density	N-Value
Very Loose	<4
Loose	4 - 10
Compact	10 - 30
Dense	30 - 50
Very Dense	>50

COHESIVE

Consistency	N-Value	Su (kPa)
Very Soft	<2	<12
Soft	2 - 4	12 - 25
Firm	4 - 8	25 - 50
Stiff	8 - 15	50 - 100
Very Stiff	15 - 30	100 - 200
Hard	>30	>200

ASTM STANDARDS

ASTM D1586 Standard Penetration Test (SPT)

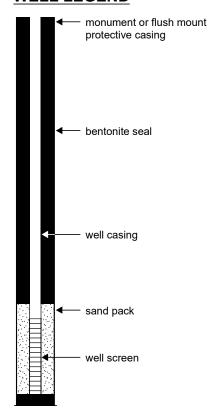
Driving a 51 mm O.D. split-barrel sampler ("split spoon") into soil with a 63.5 kg weight free falling 760 mm. The blows required to drive the split spoon 300 mm ("bpf") after an initial penetration of 150 mm is referred to as the N-Value.

ASTM D3441 Cone Penetration Test (CPT)

Pushing an internal still rod with a outer hollow rod ("sleeve") tipped with a cone with an apex angle of 60° and a cross-sectional area of 1000 mm² into soil. The resistance is measured in the sleeve and at the tip to determine the skin friction and the tip resistance.

ASTM D2573 Field Vane Test (FVT)

Pushing a four blade vane into soil and rotating it from the surface to determine the torque required to shear a cylindrical surface with the vane. The torque is converted to the shear strength of the soil using a limit equilibrium analysis.


ASTM D1587 Shelby Tubes (ST)

Pushing a thin-walled metal tube into the in-situ soil at the bottom of a borehole, removing the tube and sealing the ends to prevent soil movement or changes in moisture content for the purposes of extracting a relatively undisturbed sample.

ASTM D4719 Pressuremeter Test (PMT)

Place an inflatable cylindrical probe into a pre-drilled hole and expanding it while measuring the change in volume and pressure in the probe. It is inflated under either equal pressure increments or equal volume increments. This provides the stress-strain response of the soil.

WELL LEGEND

ROCK CORE TERMINOLOGY (MTO SHALE)

TCR Total Core Recovery the total length of recovery (soil or rock) per run, as a percentage of the drilled length

SCR Solid Core Recovery the total length of sound full-diameter rock core pieces per run, as a percentage of the drilled length

RQD Rock Quality Designation the sum of all pieces of sound rock core in a run which are 10 cm or greater in length, as a percentage of the drilled length

Natural Fracture Frequency (typically per 0.3 m) The number of natural discontinuities (joints, faults, etc.) which are present per 0.3m. Ignores mechanical or drill-induced breaks, and closed discontinuities (e.g. bedding planes).

LOGGING DISCONTINUITIES

Discontinuity Type

BP bedding parting

CL cleavage

CS crushed seam **F7** fracture zone

FZ fracture zoneMB mechanical break

IS infilled seam

JT Joint

SS shear surface

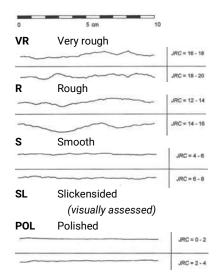
SZ shear zone

VN vein

VO void

Coating

CN CleanSN Stained


OX Oxidized VN Veneer

CT Coating (>1 mm)

Dip Inclination

 $\begin{array}{lll} \textbf{H} & \text{horizontal/flat} & 0 - 20^{\circ} \\ \textbf{D} & \text{dipping} & 20 - 50^{\circ} \\ \textbf{SV} & \text{sub-vertical} & 50 - 90^{\circ} \\ \textbf{V} & \text{vertical} & 90\pm^{\circ} \\ \end{array}$

Roughness (Barton et al.)

Spacing in Discontinuity Sets

(ISRM 1981)

 VC
 very close
 < 60 mm</td>

 C
 close
 60 - 200 mm

 M
 mod. close
 0.2 to 0.6 m

 W
 wide
 0.6 to 2 m

 VW
 very wide
 > 2 m

Aperture Size

 T
 closed / tight
 < 0.5 mm</td>

 GA
 gapped
 0.5 to 10 mm

 OP
 open
 > 10 mm

Bedding Thickness (Q. J. Eng. Geology,

Vol 3, 1970)

Planarity

PR Planar
UN Undulating
ST Stepped
IR Irregular
DIS Discontinuous
CU Curved

GENERAL

Degree of Weathering (after MTO, RR229 Evaluation of Shales for Construction Projects)

Zone	Degree	Description
Z1	unweathered	shale, regular jointing
Z2		angular blocks of unweathered shale, no matrix, with chemically weathered but intact shale
Z3	partially weathered	soil-like matrix with frequent angular shale fragments < 25mm diameter
Z4a		soil-like matrix with occasional shale fragments < 3mm diameter
Z4b	fully weathered	soil-like matrix only

Strength classification (after Marinos and Hoek, 2001; ISRM 1981b)

Grade		(MPa)	Field Estimate (Description)	10.0,1270)	
R6	extremely strong	> 250	can only be chipped by geological hammer	Very thickly bedded	> 2 m
R5	very strong	100 - 250	requires many blows from geological hammer	Thickly bedded	0.6 – 2m
R4	strong	50 - 100	requires more than one blow from geological hammer	Medium bedded	200 – 600mm
R3	medium strong	25 - 50	can't be scraped, breaks under one blow from geological hammer	Thinly bedded Very thinly bedded	60 – 200mm 20 – 60mm
R2	weak	5 - 25	can be peeled / scraped with knife with difficulty	Laminated	6 – 20mm
R1	very weak	1 - 5	easily scraped / peeled, crumbles under firm blow of geo. hammer	Thinly Laminated	< 6mm
R0	extremely weak	< 1	indented by thumbnail		

Date Started: Jan 24, 2022

Position: E: 634377, N: 4841782 (UTM 17T)

BOREHOLE LOG 1

Elev. Datum: Geodetic File No.: 21-195 Project: 48 Grenoble Drive, Toronto, ON Client: Tenblock undrained shear strength (kPa)
unconfined + field vane stratigraphy samples headspace vapour (ppm) lab data $\widehat{\Xi}$ Ξ methane details scale 40 80 120 160 100 200 comments SPT N-value drill method: elevation SPT N-values (bpf) moisture / plasticity description depth number grain size distribution (%) (MIT) X dynamic cone type 126.9 **GROUND SURFACE** GR SA SI CI 40 0 125mm ASPHALT 1 SS 57 ф 100mm AGGREGATE SS1: BTEX, PAHs, PHCs - 126 FILL, sandy silt, trace clay, trace gravel, trace rock fragments, trace organics, very 2 29 SS 0 SS2: EC/SAR, H-Ms, Metals, ORPs, pH, VOCs dense, brown, moist 3 SS 19 - 125 (本) ...at 0.8 m, compact SS3: PAHs SAND, trace silt, trace clay, some gravel to 25 62 10 3 4 27 SS **a** 0 gravelly, compact, brown, moist - 124 <u>SS4:</u> EC/SAR, H-Ms, Metals, ORPs, pH 3 -5 SS 25 **\$**0 - 123 ...at 4.6 m, wet, dense 6 SS 30 - 122 0 5 — - 121 120.8 6.1 6 – CLAYEY SILT, some sand, trace gravel, 7 SS 36 0 hard, grey, moist (GLACIAL TILL) SS7: BTEX, PHCs - 120 8 SS 67 - 119 0 8 – SS8: VOCs - 118 9 -...at 9.1 m, trace sand 9 SS 61 0 - 117 10 -...at 10.7 m, silt partings 50 / 0 10 SS -116 11 -40mn -115 11 SS 42 0 -114 13 -113 12 SS 46 -112 15 15.2 SILT, trace clay, trace sand, trace gravel, 13 SS 80 0 very dense, grey, wet (GLACIAL TILL) -111 16 -SILT AND CLAY, trace sand, hard, grey, 17 -14 SS 36 0 - 109 18 -...at 18.3 m, very stiff 15 SS 19 0 - 108 - 107 ...at 19.8 m, wet 20 SS 23 0 **GROUNDWATER LEVELS END OF BOREHOLE** <u>date</u> depth (m) elevation (m) Mar 25, 2022 Mar 31, 2022 114.0 114.0 12.9 12.9 Borehole was filled with drill water upon Apr 18, 2022 12.8 114.1 completion of drilling. May 6, 2022 12.7 114.2 May 20, 2022 Sep 23, 2022 50 mm dia. monitoring well installed. 12.8 114.1 113.9 13.0 No. 10 screen *latest 6 measurements shown

Date Started: Jan 26, 2022

Position: E: 634413, N: 4841796 (UTM 17T)

BOREHOLE LOG 2

Elev. Datum: Geodetic File No.: 21-195 Client: Tenblock Project: 48 Grenoble Drive, Toronto, ON undrained shear strength (kPa)
unconfined + field vane stratigraphy samples headspace vapour (ppm) lab data $\widehat{\Xi}$ Ξ methane details scale 40 80 120 160 100 200 comments SPT N-value drill method: elevation SPT N-values (bpf) moisture / plasticity description depth grain size distribution (%) (MIT) number X dynamic cone type **GROUND SURFACE** 127.1 GR SA SI CL 40 0 100mm ASPHALT 1 41 Ь SS 100mm AGGREGATE SS1: BTEX, PAHs, PHCs FILL, silty sand, some clay, trace gravel, trace organics, dense, brown, moist 2 10 SS - 126 SS2: EC/SAR, H-Ms, Metals, ORPs, pH ...at 0.8 m, loose, dark brown 3 5 1 65 24 10 SS 0 wollow = - 125 SS3: VOCs GRAVELLY SAND, some silt, trace clay, 4 23 SS compact to dense, brown, moist SS4: PAHs 3 -- 124 5 SS 33 **p**O SS5: EC/SAR, H-Ms, Metals, ORPs, pH - 123 122.5 4.6 CLAYEY SILT, sandy, trace gravel, very stiff, 6 25 0 5 — - 122 brown to grey, moist (GLACIAL TILL) 6 – - 121 ...at 6.1 m, some sand, grey 7 25 SS 0 SS7: BTEX, PHCs - 120 0 1 71 28 ...at 7.6 m. trace sand, hard 8 SS 47 \circ 8 -- 119 SS8: VOCs - 118 92 / 9 SS 0 75mn 10 -10.7 SANDY SILT, some clay, trace gravel, 10 SS 49 0 11 -- 116 dense, grey, moist (GLACIAL TILL) -- 115 11 SS 45 0 13 --114 12 SS 32 14 -_113 15 -15.2 SILT AND CLAY, trace sand, hard, grey, 48 13 SS \circ -111 14 SS 51 18 - 109 ...at 18.3 m, wet, very stiff SS 21 Ó 108 SS 22 107.6

END OF BOREHOLE

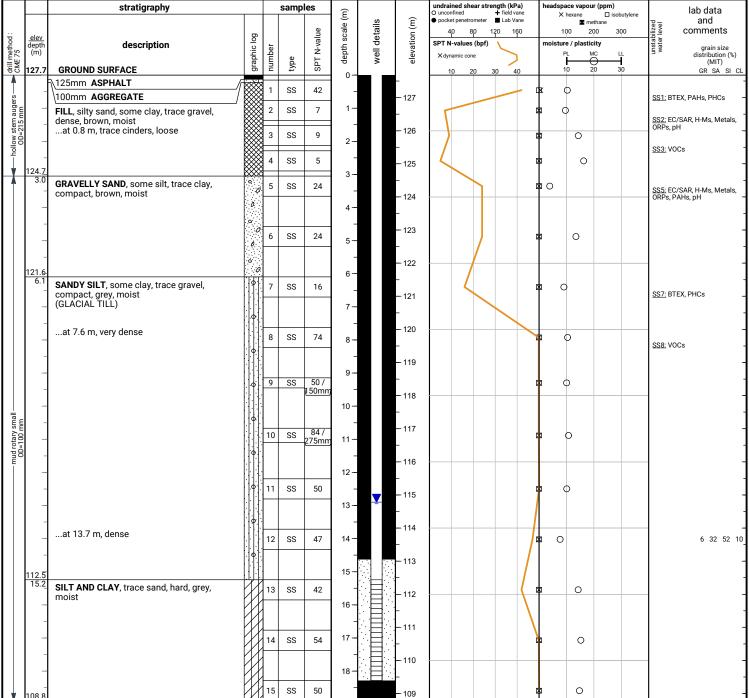
Borehole was filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS date depth (m) elevation (m)

uate	<u>aepui (iii)</u>	elevation (III
Mar 14, 2022	15.4	111.7
Mar 25, 2022	15.5	111.6
Mar 31, 2022	15.5	111.6
Apr 18, 2022	15.5	111.6
May 6, 2022	15.4	111.7
Sep 23, 2022	15.2	111.9
*latest 6 measu	rements shown	

File No.: 21-195


Date Started: Jan 28, 2022

Position: E: 634439, N: 4841786 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 3

Client: Tenblock Project: 48 Grenoble Drive, Toronto, ON undrained shear strength (kPa)
O unconfined + field vane headspace vapour (ppm) lab data Ξ methane 40 80 120 160 100 200 comments elevation SPT N-values (bpf) moisture / plasticity grain size distribution (%) (MIT) X dynamic cone GR SA SI CI 40

END OF BOREHOLE

Borehole was filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS

<u>date</u>	depth (m)	elevation (m)
Mar 25, 2022	15.6	112.1 ` ´
Mar 31, 2022	15.5	112.2
Apr 18, 2022	14.5	113.2
May 6, 2022	14.5	113.2
May 20, 2022	13.6	114.1
Sep 23, 2022	12.9	114.8
*latest 6 measur		

Date Started: Jan 31, 2022

Position: E: 634462, N: 4841784 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 4

File No.: 21-195 Client: Tenblock Project: 48 Grenoble Drive, Toronto, ON undrained shear strength (kPa)
unconfined + field vane stratigraphy samples headspace vapour (ppm) lab data $\widehat{\Xi}$ Ξ methane details scale 80 120 160 100 200 comments SPT N-value drill method: elevation SPT N-values (bpf) moisture / plasticity description number depth grain size distribution (%) (MIT) well X dynamic cone type 127.6 **GROUND SURFACE** GR SA SI CL 0 100mm TOPSOIL 1 10 φ SS SS1: BTEX, PAHs, PHCs FILL, silty sand, some clay, trace gravel, 127 trace organics, compact, brown, moist 2 15 SS 0 SS2: EC/SAR, H-Ms, Metals, hollow s -1263 12 SS 0 GRAVELLY SAND, some silt, trace clay, 4 22 0 SS - 125 compact, brown, moist SS4: PAHs 3 -5 SS 30 0 SS5: EC/SAR, H-Ms, Metals, ORPs, pH - 124 - 123 ...at 4.6 m, dense, wet 6 SS 34 0 5 --122 6 – SANDY SILT, trace clay, trace gravel, very 7 53 SS 0 dense, grey, moist (GLACIAL TILL) SS7: BTEX, PHCs - 121 - 120 8 SS 75 0 8 -- 119 9 -97 / 9 SS 0 75mn -118 SS9: VOCs 10 -10 SS 81 11 \Diamond mud r. OD=1 - 116 11 SS 50 0 13 -- 114 SILT AND CLAY, trace sand, hard, grey, 12 SS 68 0 - 113 15 -54 13 SS \Box 16 - 111 14 SS 51 0 110 18 ...at 18.3 m, very stiff, wet SS 28 0 1 61 38-109 108 20 SS 28 0 **GROUNDWATER LEVELS END OF BOREHOLE** <u>date</u> depth (m) elevation (m) Mar 25, 2022 Mar 31, 2022 112.9 112.9 14.7 14.7 Borehole was filled with drill water upon Apr 18, 2022 14.7 112.9 completion of drilling. May 6, 2022 14.7 112.9 May 20, 2022 Sep 23, 2022 50 mm dia. monitoring well installed. 14.7 112.9 14.5 113.1 No. 10 screen *latest 6 measurements shown

File No.: 21-195

Date Started : Feb 8, 2022

Position: E: 634451, N: 4841759 (UTM 17T)

Elev. Datum : Geodetic

BOREHOLE LOG 5

Project: 48 Grenoble Drive, Toronto, ON Client: Tenblock

		stratigraphy			sampl	es	<u></u>			undrained shear	strength (kPa		ace vapour (ppm)	lab data
							depth scale (m)	<u>.e</u>	Œ	 pocket penetrome 	eter 🔳 Lab Va	ne	hexane isobutylene methane	l i
 p	elev		go			SPT N-value	sca	well details	elevation (m)	40 80 SPT N-values (b	120 16		00 200 300 re / plasticity	and comments Section Comments Comments
neth 55	elev depth (m)	description	graphic log	per	4)	ž	epth	<u>=</u>	evat	X dynamic cone	(idi	moistu	PL MC LL	
่=ี่₩	127.6	GROUND SURFACE	grap	number	type	SPT		>	e e	10 20	30 40	,	10 20 30	(MIT) GR SA SI C
A		\150mm TOPSOIL	***	1	SS	10	0 -		-			, DX	0	
ls.	-	FILL, silty sand, some clay, trace gravel,	\bowtie				-		- 127	\ \ \		T		SS1: EC/SAR, H-Ms, Metals, ORPs, PAHs, pH
auge	_	trace organics, loose to compact, dark brown, moist	\bowtie	2	SS	14	1 –		-			x	o	
-hollow stem augers- 0D=215 mm	-	brown, moist					-		- 126					SS2: BTEX, PHCs, VOCs
No =	125 3		₩	3	SS	5	2-					2 2	0	
- ho	125.3 2.3	GRAVELLY SAND, some silt, trace clay,	0	4	SS	21	-		- 125			B 0		
V	_	compact, brown, moist	0				3 -		123			T		SS4: EC/SAR, H-Ms, Metals, ORPs, PAHs, pH
•	_		0	5	SS	28	_					\$ 10		
			ο ο				4		 124					
			0				4-		-					
		at 4.6 m, some clay, wet	ó	6	SS	26	_		- 123			1521	0	
	_		0	H			5 –		-		/	1		
	-		0				-		- 122	/				
	121.5 6.1	21.22	261				6 -		-					
	-	CLAYEY SILT, some sand, trace gravel, stiff, grey, moist		7	SS	13	-		- 121			2	Φ	SS7: BTEX, PHCs, VOCs
	_	(GLACIAL TILL)					7 –							
	-						-		- 120					
	_	at 7.6 m, silt partings, hard		8	SS	73	8 –		- 120			10	0	
							_							
									- 119					
					00	07	9 –		-			1		
	-			9	SS	97	-		- 118			DE L	0	
 =	_						10 -		-					
mm mm	-					93 /	-		- 117					
otar) =100	-			10	SS	93 / 275mm	11 –		_			C Z	Φ	
mud rotary small OD=100 mm	-						-		- 116					
Ī	_						12 -		L					
	_			11	SS	77	_		- 115			23		
	_						13 -		-115					
							_		Ī					
		at 13.7 m, sandy	W	12	SS	94/	14		- 114			CRI	0	
						275mm	14 -		ŀ			Ţ		
							-		- 113					
	112. <u>4</u> 15.2	L					15 –	l∵⊟∵	-					
	13.2	SANDY SILT, some clay, trace gravel, very dense, grey, moist		13	SS	50	-	l	-112					
	-	(GLACIAL TILL)					16 -		-					
	110.8		φ.				-		- 111					
	16.8	SILI AND CLAT, trace sarid, riard, grey,	77	14	SS	49	17 -					1	0	
	-	moist		\vdash	-		_		- 110					
	_		M				18 -		- 110					
			KKI	-			_		Γ			1		
V	108.7		ИИ	15	SS	53			- 109			ZKI	0	

END OF BOREHOLE

Borehole was filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS

<u>date</u>	depth (m)	elevation (m)					
Mar 25, 2022	9.6	118.0 `					
Mar 31, 2022	9.7	117.9					
Apr 18, 2022	9.6	118.0					
May 6, 2022	9.5	118.1					
May 20, 2022	9.4	118.2					
Sep 23, 2022	9.4	118.2					
*latest 6 measurements shown							

Position: E: 634387, N: 4841750 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 6

File No.: 21-195 Client: Tenblock Project: 48 Grenoble Drive, Toronto, ON undrained shear strength (kPa)
unconfined + field vane stratigraphy samples headspace vapour (ppm) lab data $\widehat{\Xi}$ Ξ methane details scale 80 120 160 100 200 comments SPT N-value elevation SPT N-values (bpf) moisture / plasticity description graphic l depth grain size distribution (%) (MIT) number X dynamic cone type **GROUND SURFACE** 125.2 GR SA SI CI 40 100mm ASPHALT 125 1 41 SS 0 SS1: EC/SAR, H-Ms, Metals, ORPs, PAHs, pH 100mm AGGREGATE 0.8 FILL, silty sand, some clay, trace gravel, trace organics, dense, brown, moist 31 2 SS 歯の - 124 SS2: BTEX, PHCs, VOCs GRAVELLY SAND, some silt, trace clay, 3 21 SS dense, brown, moist ...at 2.3 m, compact 4 22 SS 0 SS4: EC/SAR, H-Ms, Metals, ORPs, PAHs, pH 3 -...at 3.0 m, wet - 122 5 SS 12 - 121 120.6 4.6 **CLAYEY SILT**, trace sand, trace gravel, with silt partings, stiff to very stiff, grey, moist (GLACIAL TILL) 6 13 0 5 -SS6: BTEX, PHCs - 120 6 – - 119 7 24 SS 0 SS7: VOCs SANDY SILT, trace clay, trace gravel, very 8 SS 56 0 dense, grey, moist (GLACIAL TILL) 8 -- 117 9 – -- 116 ...at 9.1 m, dense 9 SS 41 10 -- 115 10 SS 43 h 11--114 0 11 SS 55 13 -- 112 SILT AND CLAY, trace sand, hard to very 12 45 0 SS stiff, grey, moist 15 - 110 ...at 15.2 m, trace sand 26 0 13 SS 16 - 109 14 SS 21 108 18 107 ...at 18.3 m, wet SS 20 0 - 106 20 SS 21 Ф **GROUNDWATER LEVELS END OF BOREHOLE** <u>date</u> depth (m) elevation (m) Mar 25, 2022 Mar 31, 2022 17.1 17.1 108.1 108.1 Borehole was filled with drill water upon Apr 18, 2022 16.7 108.5 completion of drilling. May 6, 2022 16.6 108.6 May 20, 2022 Sep 23, 2022 50 mm dia. monitoring well installed. 16.2 109.0 109.6 15.6 No. 10 screen *latest 6 measurements shown

Position: E: 634411, N: 4841744 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 7

File No.: 21-195 Project: 48 Grenoble Drive, Toronto, ON Client: Tenblock undrained shear strength (kPa)
O unconfined + field vane stratigraphy samples headspace vapour (ppm) lab data $\widehat{\Xi}$ Ξ methane details scale 40 80 120 160 100 200 comments SPT N-value drill method : elevation SPT N-values (bpf) moisture / plasticity description depth grain size distribution (%) (MIT) number X dynamic cone type **GROUND SURFACE** 127.1 GR SA SI CL 0 - 127 100mm ASPHALT 1 32 SS 0 SS1: BTEX, PAHs, PHCs 100mm AGGREGATE 2 24 SS **FILL**, silty sand, trace clay, trace gravel, trace organics, trace cinders, dense to - 126 0 SS2: EC/SAK, rr-1915, . ORPs, PAHs, pH 2 59 32 7 compact, dark brown with orange, moist 3 SS 13 0 SS3: VOCs GRAVELLY SAND, some silt, trace clay, 4 SS 20 **\$**0 SS4: EC/SAR, H-Ms, Metals, ORPs, PAHs, pH compact, brown, moist 3 -- 124 5 SS 28 **\$**0 ...at 4.6 m, wet 6 SS 24 0 5 -SS6: BTEX, PHCs, VOCs -122121.0 6.1 6 – - 121 SANDY SILT, trace clay, trace gravel, 7 SS 21 Φ compact, grey, moist (GLACIAL TILL) - 120 ...at 7.6 m, trace clay, very dense to dense 8 SS 56 0 8 -_ 119 SS8: VOCs 9 – - 118 9 SS 56 0 10 -- 117 10 SS 49 11 -0 - 116 - 115 98 / 11 SS 0 275mr 13 -- 114 ...at 13.7 m, silt partings 12 SS 51 14 -Ó 15 --112. 13 SS 50 / 140mr 16 -- 111 17 -14 SS 53 - 110 18 -- 109 15 39 SS 0 - 108 19.8 20 -SILTY CLAY, trace sand, very stiff, grey, wet SS 27 - 107 16 O 21 -106 17 SS 24 0 6 33 61-LL=42.2 22 -- 105 23 -- 104 18 SS 20 24 -- 103 ...at 24.4 m, wet SS 28 0 **Page** 1 of 2 Tech: FR | PM: KM/SP | Rev: KB

Position: E: 634411, N: 4841744 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 7

File No.: 21-195 Client: Tenblock Project: 48 Grenoble Drive, Toronto, ON undrained shear strength (kPa)
unconfined + field vane stratigraphy samples headspace vapour (ppm) lab data $\widehat{\Xi}$ pocket penetrometer Lab Vane Ξ methane details scale 40 80 120 160 100 200 comments SPT N-value drill method: elev depth (m) elevation SPT N-values (bpf) moisture / plasticity description number depth grain size distribution (%) (MIT) X dynamic cone type (continued) GR SA SI CI 40 20 25 - 102 SILTY CLAY, trace sand, very stiff, grey, wet (continued) SS 50 / 26 0 20 SAND, some silt, trace clay, trace gravel, - 101 125mn very dense, grey, wet - 100 0 50 / 21 SS / 28 -_ 99 29 1 81 11 7_ 22 SS 50/ 125mr 30 -- 97 SS 50 / 0 23 75mm 31 --96 32 -- 95 mud rotary and OD=100 n 1 PMT PMT@94.3 m: 250 MPa 33 -- 94 0 33.5 SAND AND GRAVEL, some silt, trace clay, 100mn ۰ ٥ 34 very dense, grey, wet -93 ø O 92.<u>0</u> 35 -- 92 SANDY SILT, some gravel, some clay, very dense, grey, moist (GLACIAL TILL) 2 PMT PMT@91.3 m: 130 MPa 36 --91 50 / 0 SS 75mm 37 -90 38 -- 89 50 / 0 ...at 38.1 m, trace shale fragments 18 26 40 16 75mm 39 88 0 50 / 39.6 87.4 39.7 INFERRED BEDROCK, shale and limestone RUN 75mm 40 -87 **GEORGIAN BAY FORMATION** 40.5 m (Elev. 86.6 m): transition to sound bedrock 2 RUN Rock coring (HQ) 0D=96 mm (See rock core log for details)

END OF BOREHOLE

Borehole was filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GROUNDWATER LEVELS

ONO OND WATER LEVELS							
<u>date</u>	depth (m)	elevation (m)					
Mar 14, 2022	30.1	97.0					
Mar 25, 2022	30.1	97.0					
Apr 18, 2022	29.9	97.2					
May 6, 2022	29.9	97.2					
May 20, 2022	29.9	97.2					
Sep 23, 2022	30.0	97.1					
*latest 6 measurements shown							

42

- 85

3 RUN

Position: E: 634411, N: 4841744 (UTM 17T)

Elev. Datum: Geodetic

TCR = 100% SCR = 100% RQD = 89%

42.9m

85 -

2

0

2

ROCK CORE LOG 7

85

File No.: 21-195 Project: 48 Grenoble Drive, Toronto, ON Client: Tenblock Run UCS (MPa) ● natural fracture frequency shale weathering elevation (m) laboratory elev depth (m) graphic log notes and comments 25 50 100 250 depth (m) stratigraphy recovery zones estimated strength Rock coring started at 39.7m below grade GEORGIAN BAY FORMATION TCR = **159**% SCR = **99**% RQD = **79**% Shale, grey, thinly bedded, weak; joints are horizontal, gapped, clean, planar; 3 87 -39.6 / 87.5 - 40.7 / 86.4m: clay coated joint interbedded with limestone, light grey, very thinly bedded, medium strong 40.4 / 86.7 - 40.4 / 86.7m: clay coated joint Overall shale: 91%, limestone: 9% ... at 40.5 m (Elev. 86.7 m), transition to sound rock TCR = 100% SCR = 100% RQD = 62% 2 1 86 0% limestone Run 1: 2 100% shale 0 41.7 / 85.4m: JT SV IR T CN 13% limestone 87% shale Run 2: 2 41.8 / 85.3 - 41.8 / 85.3m: fractured zone

END OF COREHOLE

Run 3:

5% limestone

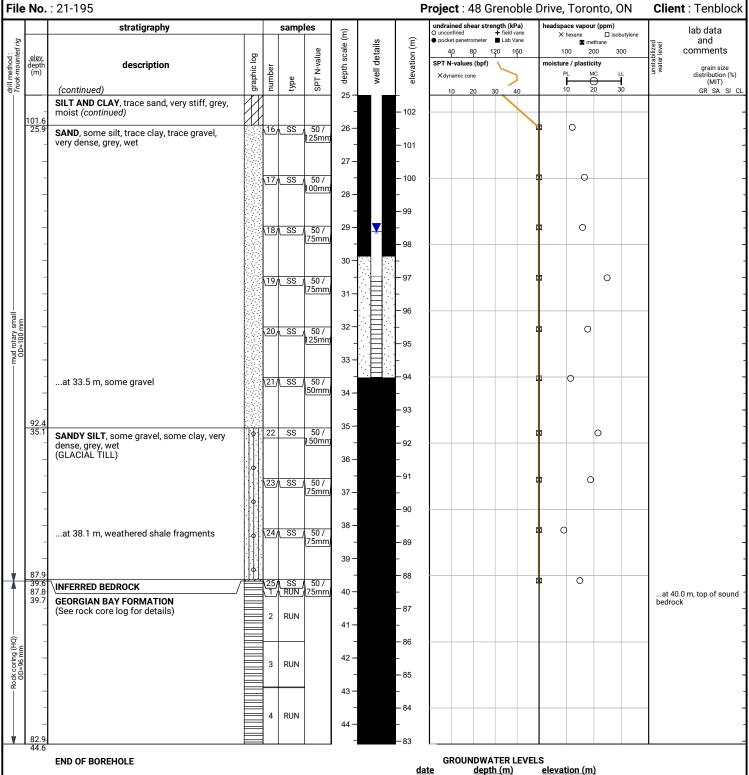
e: 21-195 gint.gpj

 Page 1 of 1
 Tech : FR | PM : KM/SP | Rev : KB

Position: E: 634407, N: 4841779 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 8


File No.: 21-195 Project: 48 Grenoble Drive, Toronto, ON Client: Tenblock undrained shear strength (kPa)
unconfined + field vane stratigraphy samples headspace vapour (ppm) lab data $\widehat{\Xi}$ Ξ methane details scale drill method : Truck-mounted ri 40 80 120 160 100 200 comments SPT N-value elevation SPT N-values (bpf) moisture / plasticity description depth grain size distribution (%) (MIT) number X dynamic cone **GROUND SURFACE** 127.5 20 GR SA SI CI 40 0 SS 50 / 50mm ASPHALT 1 100mn SS1: PAHs 50mm AGGREGATE 2 FILL, silty sand, some clay, trace gravel, trace asphalt, very dense, dark brown, wet SS 18 0 $\underline{\text{SS2:}}$ EC/SAR, H-Ms, Metals, ORPs, pH - 126 ...at 0.8 m, compact, moist 3 5 SS ψ SS3: BTEX, PHCs, VOCs GRAVELLY SAND, some silt, trace clay, - 125 4 18 0 SS wollow =OO compact, brown, moist SS4: PAHs 3 -5 SS 21 **\$**0 SS5: EC/SAR, H-Ms, Metals, ORPs, pH - 124 - 123 ...at 4.6 m, wet 6 SS 14 0 5 -- 122 6 – ...at 6.1 m, silty sand, some gravel, grey 7 29 SS 0 - 121 SS7: BTEX, PHCs - 120 SANDY SILT, trace clay, trace gravel, very dense to dense, grey, moist 8 SS 63 0 8 -SS8: VOCs (GLACIAL TILL) - 119 9 – 9 SS 61 0 - 118 10 -...at 10.7 m, sand seam 89 / 10 SS 0 11-250mn - 116 -115 PMT PMT@114.5 m: 20 MPa 13 --114 11 SS 45 14 -0 - 113 15 --112 2 PMT 16 -- 111 ...at 16.8 m, some clay 17 12 SS 45 0 18 -- 109 PMT 3 PMT@108.4 m: 36 MPa - 108 19.8 20 -SILT AND CLAY, trace sand, very stiff, grey, ĺ 13 SS 25 0 moist - 107 21 - 106 РМТ PMT@105.4 m: 115 MPa - 105 ...at 22.9 m, wet 23 -SS 26 0 - 104 24 -...at 24.4 m, sandy SS 28 0 **Page** 1 of 2 Tech: OM | PM: KM/SP | Rev: MD

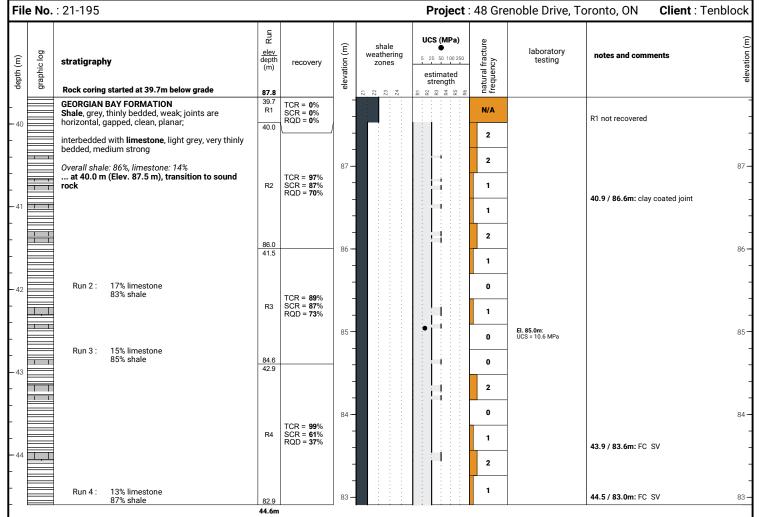
Position: E: 634407, N: 4841779 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 8

Borehole was filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed.


gate	aeptn (m)	elevation (m
Mar 14, 2022	31.0	96.5
Mar 25, 2022	30.8	96.7
Apr 18, 2022	31.1	96.4
May 6, 2022	30.9	96.6
May 20, 2022	30.8	96.7
Sep 23, 2022	29.1	98.4
*latest 6 measu	rements shown	

Position: E: 634407, N: 4841779 (UTM 17T)

Elev. Datum: Geodetic

ROCK CORE LOG 8

END OF COREHOLE

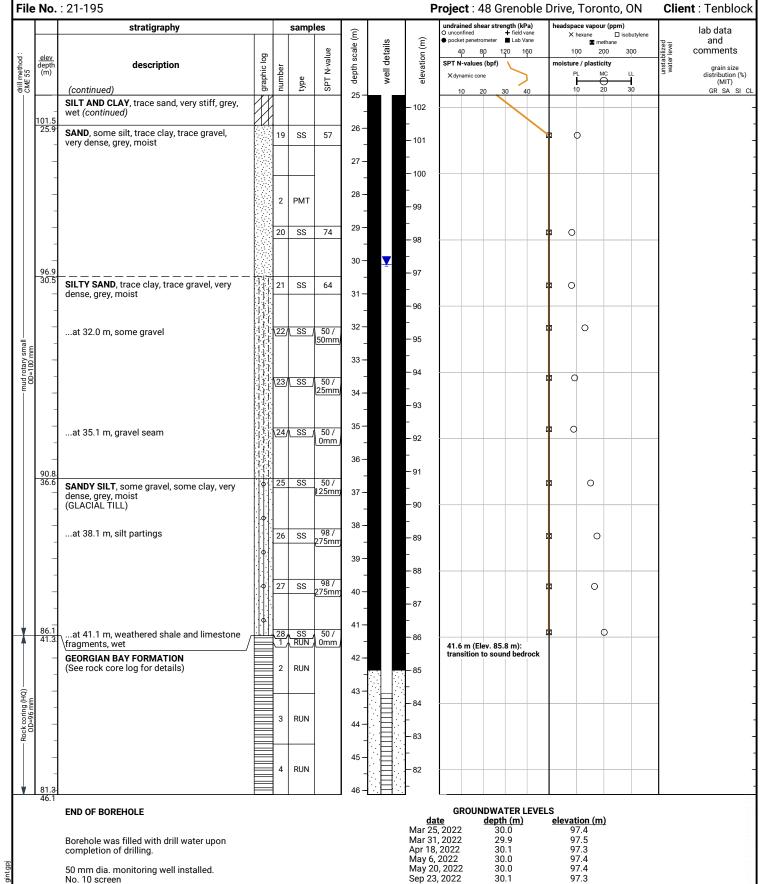
: ZI-195 gint.gpj

 Page 1 of 1
 Tech : OM | PM : KM/SP | Rev : MD

Position: E: 634451, N: 4841812 (UTM 17T)

Elev. Datum: Geodetic

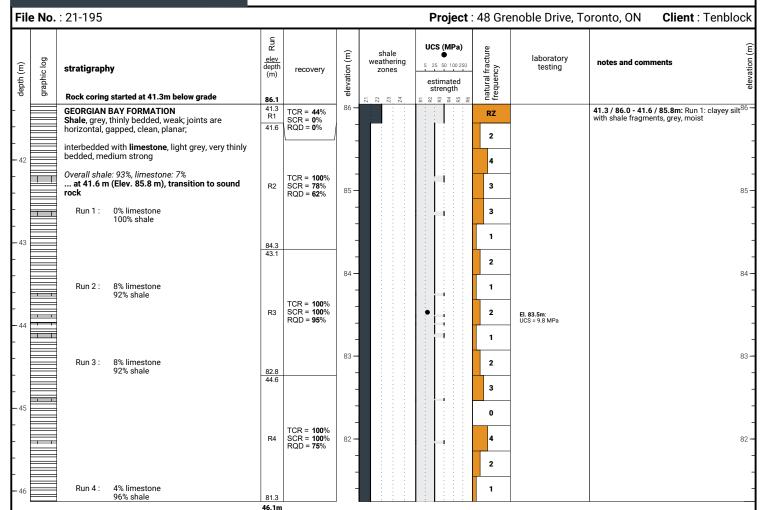
BOREHOLE LOG 9


File No.: 21-195 Project: 48 Grenoble Drive, Toronto, ON Client: Tenblock undrained shear strength (kPa)
unconfined + field vane stratigraphy samples headspace vapour (ppm) lab data $\widehat{\Xi}$ Ξ methane details scale 40 80 120 160 100 200 comments SPT N-value elevation SPT N-values (bpf) moisture / plasticity description depth grain size distribution (%) (MIT) number X dynamic cone type GROUND SURFACE 127.4 GR SA SI CI 0 100mm ASPHALT - 127 1 18 SS 0 SS1: EC/SAR, H-Ms, Metals, ORPs, PAHs, pH 80mm AGGREGATE 2 SS 11 0 FILL, silty sand, some clay, trace gravel, trace organics, trace brick fragments, compact, dark brown, moist - 126 SS2: BTEX, PHCs, VOCs 3 6 SS 0 - 125 GRAVELLY SAND, some silt, trace clay, 4 29 SS 0 <u>SS4:</u> EC/SAR, H-Ms, Metals, ORPs, PAHs, pH compact, brown, moist 3 -5 23 - 123 122.8 4.6 SANDY SILT, some clay, trace gravel, 6 27 0 5 -SS6: BTEX, PHCs compact, grey, moist (GLACIAL TILL) - 122 6 – ...at 6.1 m, dense 7 44 - 121 SS SS7: VOCs - 120 ...at 7.6 m, trace clay, very dense to dense 8 SS φ 225mn 8 -9 – 93 / 9 SS -118 250mn 10 -- 117 10 SS 55 0 11 -- 116 -115 SS 80 0 13 -12 SS 71 14 -0 - 113 15 -- 112 13 45 SS 0 16 --111 ...at 16.8 m, some clay 17 14 SS 37 -110 18 -18.3 SILT AND CLAY, trace sand, very stiff, grey, 30 SS 0 - 108 20 -SS 21 16 0 21 - 106 РМТ PMT@105.3 m: 76 MPa - 105 23 -SS 26 0 24 -- 103 ...at 24.4 m, some sand SS 20 18 0 **Page** 1 of 2 Tech: FR | PM: KM/SP | Rev: MD

Position: E: 634451, N: 4841812 (UTM 17T)

BOREHOLE LOG 9

Elev. Datum : Geodetic



*latest 6 measurements shown

Position: E: 634451, N: 4841812 (UTM 17T)

Elev. Datum: Geodetic

ROCK CORE LOG 9

END OF COREHOLE

a: z1-195 gint.gr

 Page 1 of 1
 Tech : FR | PM : KM/SP | Rev : MD

Date Started : Jan 21, 2022

Position: E: 634386, N: 4841735 (UTM 17T)

Elev. Datum : Geodetic

2 GS

BOREHOLE LOG 10

GS2: PCBs

File No.: 21-195 Project: 48 Grenoble Drive, Toronto, ON Client: Tenblock headspace vapour (ppm)

X hexane □ isobutylene undrained shear strength (kPa)
O unconfined + field vane stratigraphy samples lab data X hexane methane depth scale (m) pocket penetrometer
 Lab Vane $\widehat{\Xi}$ drill method:

Manual method:

Manual method:

(m)

125.7 well details comments 40 80 120 160 100 200 SPT N-value elevation SPT N-values (bpf) moisture / plasticity description number grain size distribution (%) (MIT) GR SA SI CL graphicI МС 20 X dynamic cone type **GROUND SURFACE** 40 0.0 .4 1². 75mm TOPSOIL FILL, silty sand, some clay, trace gravel, trace organics, brown, moist - 125.5 GS1: BTEX, EC/SAR, H-Ms, Metals, ORPs, PCBs, pH, PHCs GS hand augers 0.5 - 125.0

END OF BOREHOLE

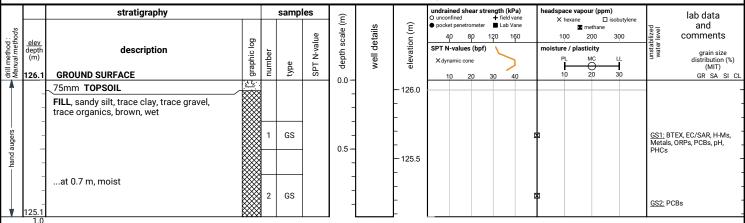
Dry and open upon completion of drilling.

le: 21-195 gint.gpj

 Page 1 of 1
 Tech : FR | PM : KM/SP | Rev : MD

File No.: 21-195

Date Started : Jan 21, 2022


Position: E: 634370, N: 4841759 (UTM 17T)

Elev. Datum: Geodetic

BOREHOLE LOG 11

Project: 48 Grenoble Drive, Toronto, ON Client: Tenblock headspace vapour (ppm)

X hexane □ isobutylene undrained shear strength (kPa)
O unconfined + field vane lab data pocket penetrometer
 Lab Vane

END OF BOREHOLE

Dry and open upon completion of drilling.

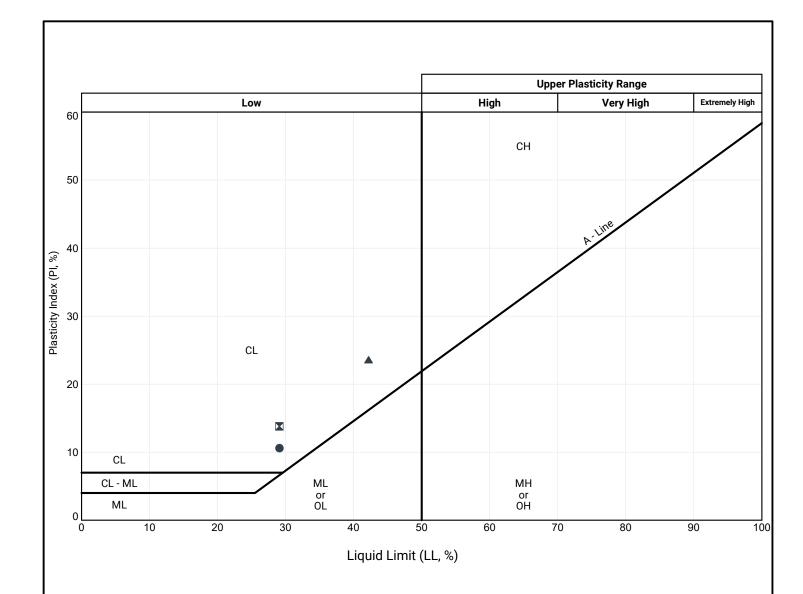
Date Started: Jan 21, 2022

Position: E: 634363, N: 4841776 (UTM 17T)

Elev. Datum : Geodetic

BOREHOLE LOG 12

File	No.	: 21-195						Р	roject : 48 Grenoble	Drive, Toronto, ON	Client : Tenblock
		stratigraphy		samp	les	(m)			undrained shear strength (kPa) O unconfined + field vane	headspace vapour (ppm) X hexane □ isobutylene	lab data
spou	alau		ח		ne	scale (ı	tails	(m) u	pocket penetrometer ■ Lab Vane 40 80 120 160	methane 100 200 300	p and comments Comments
drill method : Manual methods	depth (m)	description GROUND SURFACE	grapriic log	e e	T N-value	depth s	well details	elevation	SPT N-values (bpf) X dynamic cone	moisture / plasticity	grain size distribution (%) (MIT)
drill Mar	125.6	GROUND SURFACE		type	SPT	0.0 -	-	"	1,0 2,0 3,0 4,0	10 20 30	GR SA SI CL
hand augers ———		75mm TOPSOIL FILL, sandy silt, trace clay, trace gravel, trace organics, brown, moist	1	GS		0.5 —		- 125.5 - - - - - 125.0 -		33	GS1: BTEX, EC/SAR, H-Ms, Metals, ORPs, PCBs, pH, PHCs
	_ 124.6 1.0		<u> </u>	33] -		<u> </u>			GS2: PCBs


END OF BOREHOLE

Dry and open upon completion of drilling.

Page 1 of 1 $\textbf{Tech}: \mathsf{FR} \ | \ \textbf{PM}: \mathsf{KM/SP} \ | \ \textbf{Rev}: \mathsf{MD}$ TABLE 1
GROUNDWATER LEVEL MONITORING SUMMARY
48 GRENOBLE DRIVE
TORONTO, ON
PROJECT # 21-195

				i											01	ROUNDED EN	CINEEDING	INO															
Well ID	Ground Surface	Screen Interval	Screen Interval	Soil Strata	February	y 9, 2022	February	18, 2022	February	23, 2022	February	24, 2022	March	4, 2022		14, 2022	March 2		March 3	31, 2022	April 18	8, 2022	May 6	5, 2022	May 2	0, 2022	Septembe	r 23, 2022	Minimu (Lov	m Elev. vest)		um Elev. hest)	Seasonal Fluctuation
	Elevation (masl)	(mbgs)	(masl)		(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(±m)
BH1	126.9	12.2 - 15.2	114.7 - 111.6	CL-SI TILL	13.1	113.8	13.5	113.4	-			-	13.2	113.8	13.0	113.9	12.9	114.0	12.9	114.0	12.8	114.2	12.7	114.2	12.8	114.1	13.0	114.0	13.5	113.4	13.0	114.2	0.3
BH2	127.1	15.8 - 18.9	111.2 - 108.2	CL-SI	15.5	111.6	16.1	111.0	-			-	15.2	111.9	15.4	111.7	15.5	111.6	15.5	111.7	15.5	111.6	15.4	111.7			15.2	112.0	16.1	111.0	15.2	112.0	0.5
внз	127.7	15.2 - 18.3	112.4 - 109.4	CL-SI	DRY		-	-	16.5	111.2		-	16.2	111.5	16.0	111.8	15.6	112.2	15.5	112.2	14.5	113.2	14.5	113.2	13.6	114.1	12.9	114.8	16.5	111.2	12.9	114.8	1.8
BH4	127.6	16.8 - 19.8	110.9 - 107.8	CL-SI	16.3	111.3	-	-	14.8	112.8		-	14.8	112.8	14.8	112.8	14.7	112.9	14.7	112.9	14.7	112.9	14.7	112.9	14.7	112.9	14.5	113.1	16.3	111.3	14.5	113.1	0.9
BH5	127.6	13.7 - 16.8	113.9 - 110.9	SA-SI Till			-		10.6	117.0		-	10.1	117.6	9.9	117.7	9.6	118.0	9.7	117.9	9.6	118.0	9.5	118.1	9.4	118.2	9.4	118.2	10.6	117.0	9.4	118.2	0.6
ВН6	125.2	15.2 - 18.3	110.0 - 106.9	CL-SI TILL			17.5	107.7	-	-		-	17.7	107.5	17.4	107.8	17.1	108.1	17.1	108.1	16.7	108.5	16.6	108.6	16.2	109.0	15.6	109.6	17.7	107.5	15.6	109.6	1.0
BH7	127.1	39.9 - 42.9	87.3 - 84.2	BEDROCK			31.6	95.5	-	-	30.3	96.8	30.2	96.9	30.1	97.0	30.1	97.0	-		29.9	97.3	29.9	97.2	29.9	97.2	30.0	97.1	31.6	95.5	30.0	97.3	0.8
вн8	127.5	30.5 - 33.5	97.0 - 94.0	SI-SA			30.7	96.8	31.0	96.5			31.1	96.4	31.0	96.5	30.8	96.7	-		31.1	96.5	30.9	96.6	30.8	96.7	29.1	98.4	31.1	96.4	29.1	98.4	1.0
ВН9	127.4	43.1 - 46.1	84.3 - 81.2	BEDROCK			30.3	97.1	-	-	30.4	97.0	-	-	-	-	30.0	97.4	29.9	97.5	30.1	97.3	30.0	97.4	30.0	97.4	30.1	97.3	30.4	97.0	30.1	97.5	0.1

mbgs = metres below existing ground surface mast = metres above sea level * = unstabilized groundwater level

	Borehole	Sample	Depth (m)	Elev. (m)	LL (%)	PL (%)	PI (%)
	2	SS8	7.9	119.2	29	19	11
	₹ 4	SS15	18.6	109.0	29	15	14
L	7	SS17	21.6	105.5	42	19	23

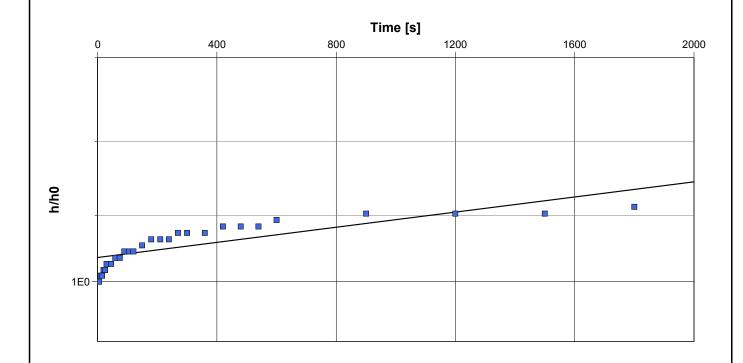
Title:

ATTERBERG LIMITS CHART

File No.:

21-195

APPENDIX B


Project: 48 Grenoble Drive, Toronto

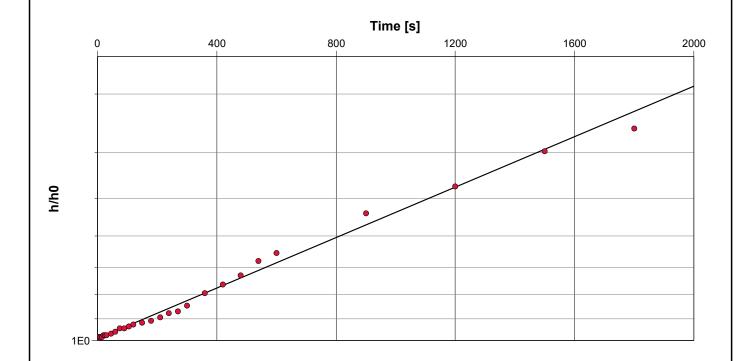
Number: 21-195

Client: Tenblock Management LP

Location: 48 Grenoble Drive, Toronto	Slug Test: MW1	Test Well: MW1
Test Conducted by: FR		Test Date: 2022-02-09
Analysis Performed by: KM/JAW	Bouwer & Rice	Analysis Date: 2022-02-25

Aquifer Thickness: 16.80 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
MW1	2.54 × 10 ⁻⁸	


Project: 48 Grenoble Drive, Toronto

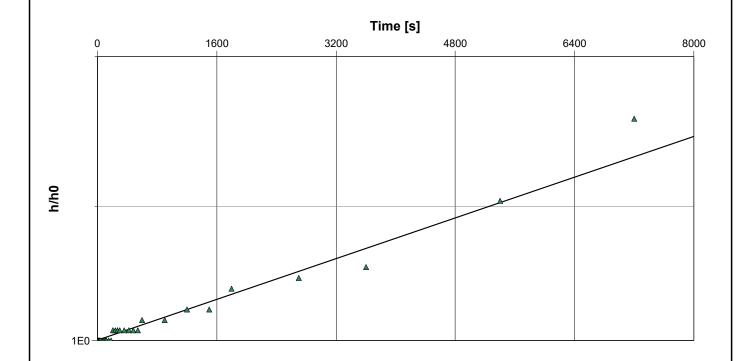
Number: 21-195

Client:

Location: 48 Grenoble Drive, Toronto	Slug Test: MW2	Test Well: MW2
Test Conducted by: FR		Test Date: 2022-02-09
Analysis Performed by: KM/JAW	Bouwer & Rice	Analysis Date: 2022-02-25

Aquifer Thickness: 19.50 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
MW2	2.53 × 10 ⁻⁷	


Project: 48 Grenoble Drive, Toronto

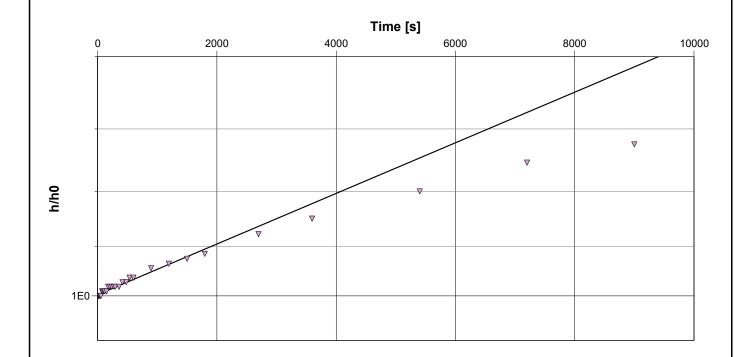
Number: 21-195

Client:

Location: 48 Grenoble Drive, Toronto	Slug Test: MW4	Test Well: MW4
Test Conducted by: FR		Test Date: 2022-02-09
Analysis Performed by:	Bouwer & Rice	Analysis Date: 2022-02-25

Aquifer Thickness: 20.40 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
MW4	8.93 × 10 ⁻⁹	


Project: 48 Grenoble Drive, Toronto

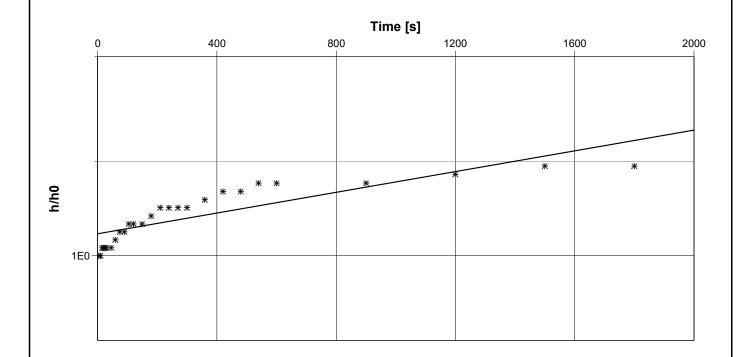
Number: 21-195

Client: Tenblock Management LP

Location: 48 Grenoble Drive, Toronto	Slug Test: MW5	Test Well: MW5
Test Conducted by: FR		Test Date: 2022-02-17
Analysis Performed by: KM/JAW	Bouwer & Rice	Analysis Date: 2022-02-25

Aquifer Thickness: 16.80 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
MW5	2.49 × 10 ⁻⁸	


Project: 48 Grenoble Drive, Toronto

Number: 21-195

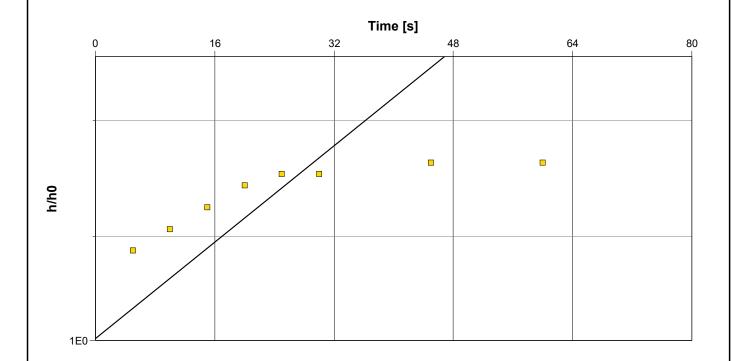
Client: Tenblock Management LP

Location: 48 Grenoble Drive, TorontoSlug Test: MW6Test Well: MW6Test Conducted by: FRTest Date: 2022-02-17Analysis Performed by: KM/JAWBouwer & RiceAnalysis Date: 2022-02-25

Aquifer Thickness: 20.40 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
MW6	2.48 × 10 ⁻⁸	

Slug Test Analysis Report


Project: 48 Grenoble Drive, Toronto

Number: 21-195

Client:

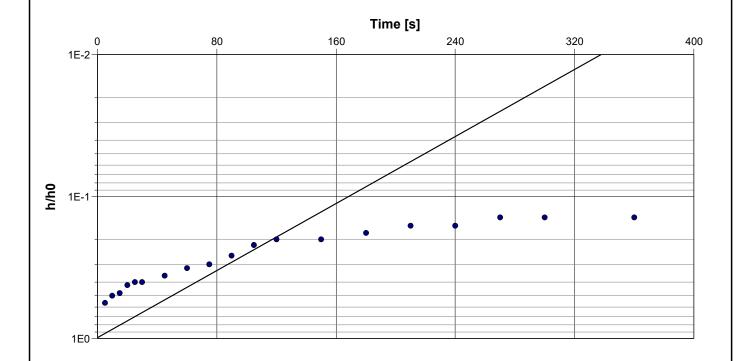
Location: 48 Grenoble Drive, TorontoSlug Test: MW7Test Well: MW7Test Conducted by: FRTest Date: 2022-02-22Analysis Performed by: KM/JAWBouwer & RiceAnalysis Date: 2022-02-25

Aquifer Thickness: 42.90 m

Calculation using Bouwer & Rice							
	Observation Well	Hydraulic Conductivity					
		[m/s]					

MW7 2.45 × 10⁻⁶

Slug Test Analysis Report


Project: 48 Grenoble Drive, Toronto

Number: 21-195

Client:

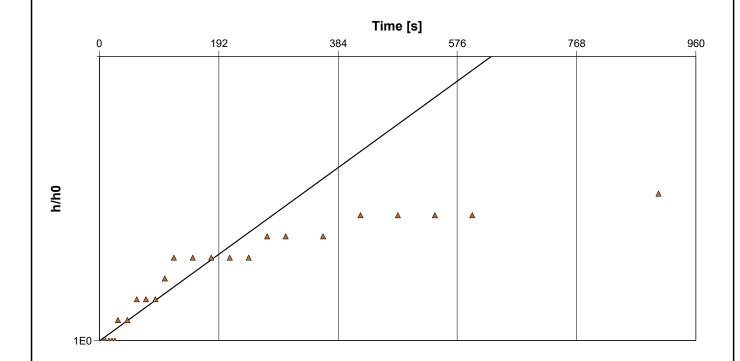
Location: 48 Grenoble Drive, Toronto	Slug Test: MW8	Test Well: MW8
Test Conducted by: FR		Test Date: 2022-02-22
Analysis Performed by: KM/JAW	Bouwer & Rice	Analysis Date: 2022-02-25

Aquifer Thickness: 36.60 m

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
MW8	5.46 × 10 ⁻⁶	

Slug Test Analysis Report

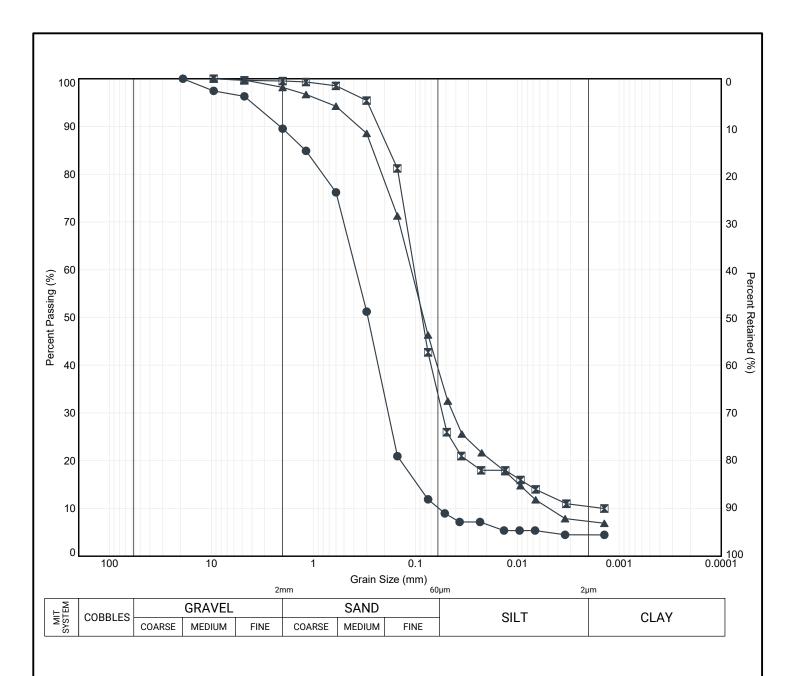

Project: 48 Grenoble Drive, Toronto

Number: 21-195

Client:

Location: 48 Grenoble Drive, Toronto	Slug Test: MW9	Test Well: MW9
Test Conducted by: FR		Test Date: 2022-02-22
Analysis Performed by: KM/JAW	Bouwer & Rice	Analysis Date: 2022-02-25

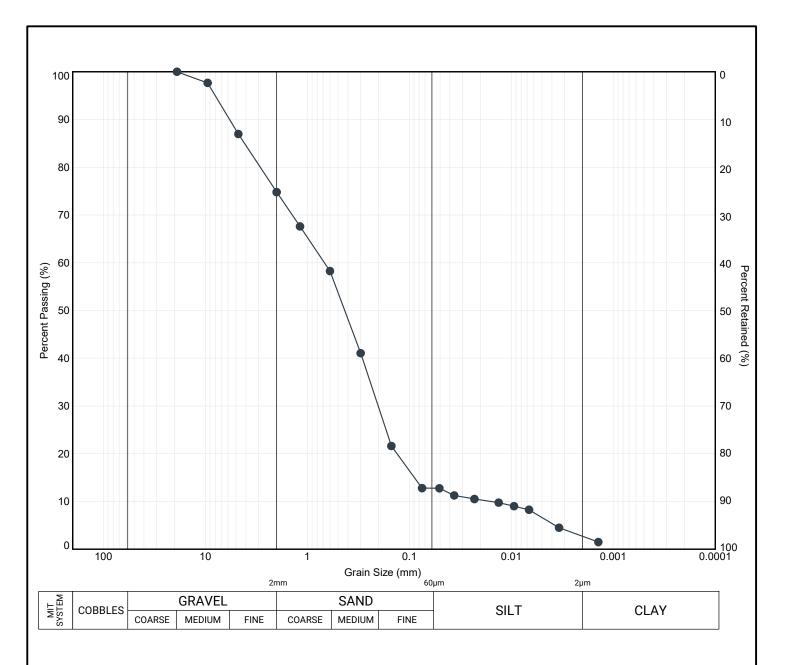
Aquifer Thickness: 46.10 m



Calculation using Bouwer & Ric	e

Observation Well	Hydraulic Conductivity	
	[m/s]	
MW9	6.72 × 10 ⁻⁸	

APPENDIX C

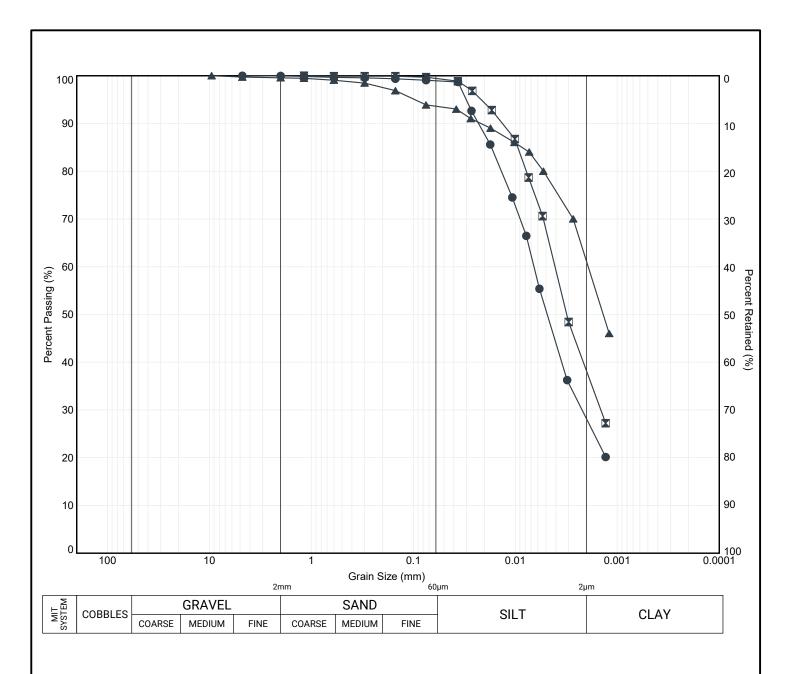

	Borehole	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	
•	1	SS3	1.8	125.1	11	78	6	5	
ightharpoons	2	SS3	1.8	125.3	1	65	24	10	
	7	SS3	1.8	125.3	2	59	32	7	

GROUNDED ENGINEERING

Title:

GRAIN SIZE DISTRIBUTION EARTH FILL

File No.:


١		Borehole	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	
	•	1	SS4	2.6	124.3	25	62	10	3	
١										
١										
١										
١										
١										
١										
١										
١										

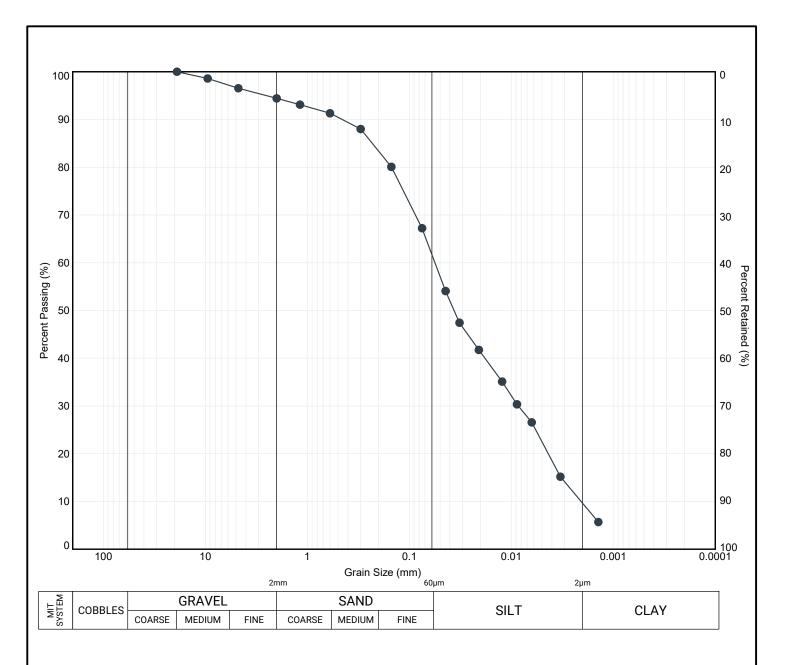
GROUNDED ENGINEERING

Title:

GRAIN SIZE DISTRIBUTION
GRAVELLY SAND

File No.:

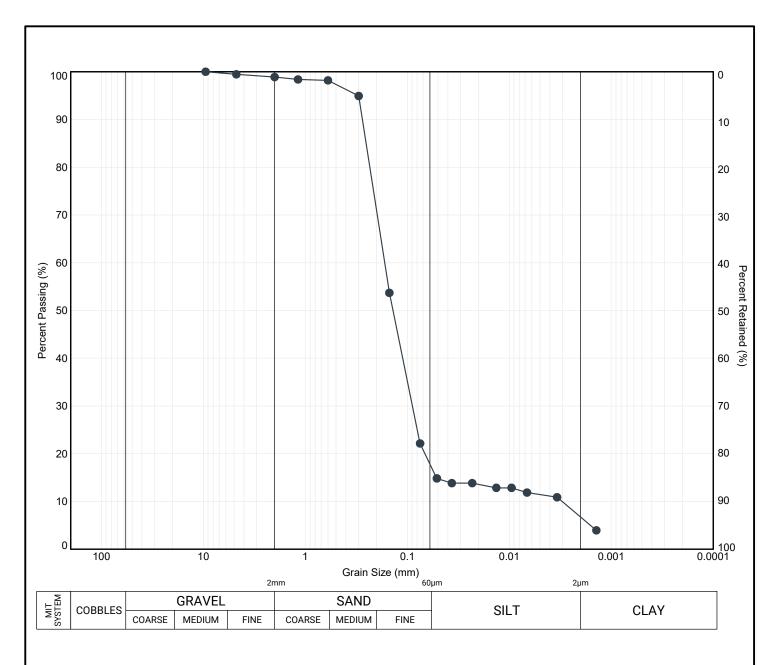
MIT S'	YSTE	N
--------	------	---


l		Borehole	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	
ĺ	•	2	SS8	7.9	119.2	0	1	71	28	
I		4	SS15	18.6	109.0	0	1	61	38	
I	•	7	SS17	21.6	105.5	0	6	33	61	
ı										

Title:

GRAIN SIZE DISTRIBUTION
CLAYEY SILT TO SILTY CLAY TILLS

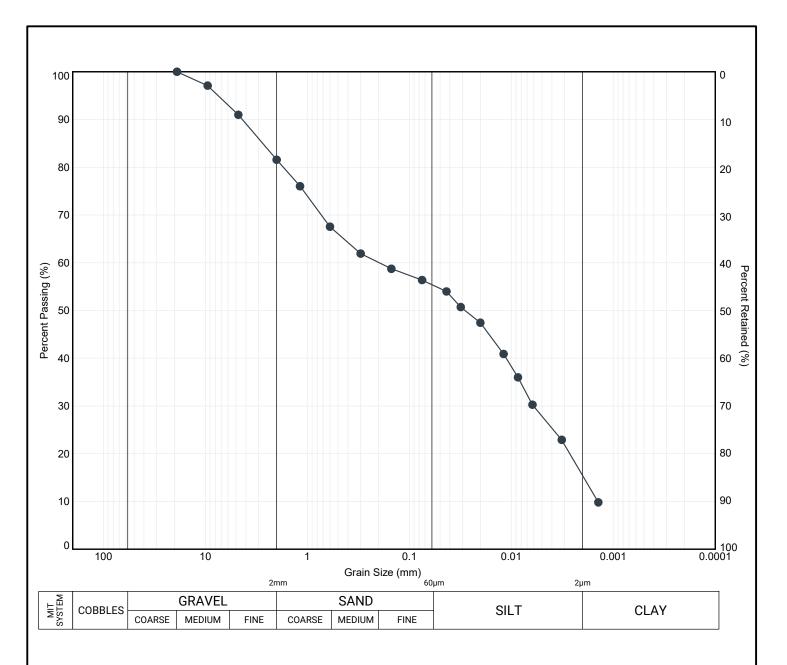
File No.:


	Borehole	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	
•	3	SS12	14.0	113.7	6	32	52	10	

Title:

GRAIN SIZE DISTRIBUTION SANDY SILT TILL

File No.:


	Borehole	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
•	7	SS22	29.0	98.1	1	81	11	7

GROUNDED ENGINEERING

Title:

GRAIN SIZE DISTRIBUTION SAND

File No.:

	Borehole	Sample	Depth (m)	Elev. (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	
•	7	SS26	38.2	88.9	18	26	40	16	
ı									

GROUNDED ENGINEERING

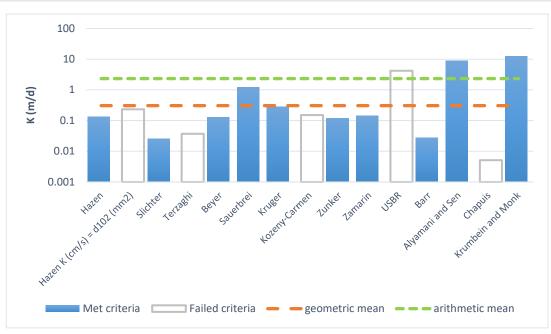
Title:

GRAIN SIZE DISTRIBUTION LOWER GLACIAL TILL

File No.:

APPENDIX D

	_					_
Κ	from	Grain	Size	Anal	lvsis	Report

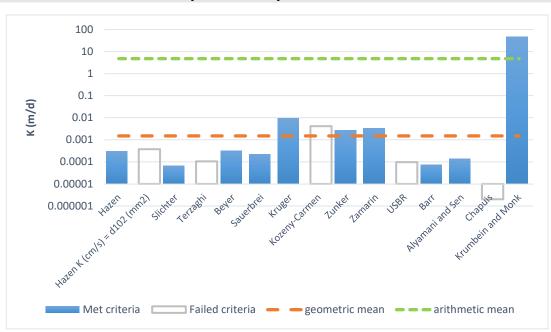

Date:

01-Mar-22

Sample Name: BH1 SS4

Mass Sample (g): T (oC) 20

Poorly sorted sand low in fines


Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	1.5E-04	1.5E-06	0.13	
Hazen K (cm/s) = d_{10} (mm)	2.7E-04	2.7E-06	0.23	
Slichter	3.0E-05	3.0E-07	0.03	
Terzaghi	4.3E-05	4.3E-07	0.04	
Beyer	1.5E-04	1.5E-06	0.13	
Sauerbrei	1.4E-03	1.4E-05	1.24	
Kruger	3.2E-04	3.2E-06	0.28	
Kozeny-Carmen	1.7E-04	1.7E-06	0.15	
Zunker	1.4E-04	1.4E-06	0.12	
Zamarin	1.7E-04	1.7E-06	0.14	
USBR	4.9E-03	4.9E-05	4.21	
Barr	3.2E-05	3.2E-07	0.03	
Alyamani and Sen	1.0E-02	1.0E-04	8.85	
Chapuis	5.9E-06	5.9E-08	0.01	
Krumbein and Monk	1.4E-02	1.4E-04	12.50	
geometric mean	3.6E-04	3.6E-06	0.31	
arithmetic mean	2.7E-03	2.7E-05	2.34	

Sample Name: BH2 SS8

Mass Sample (g): T (oC) 20

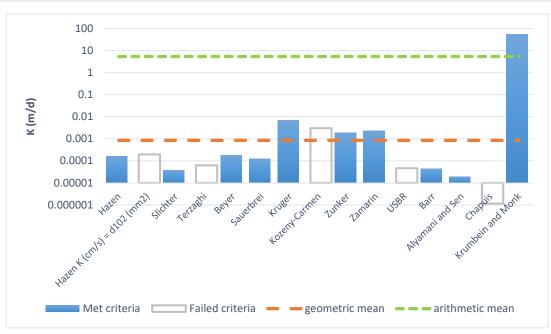
Poorly sorted clay low in fines


Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	3.5E-07	3.5E-09	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	4.3E-07	4.3E-09	0.00	
Slichter	7.7E-08	7.7E-10	0.00	
Terzaghi	1.2E-07	1.2E-09	0.00	
Beyer	3.8E-07	3.8E-09	0.00	
Sauerbrei	2.5E-07	2.5E-09	0.00	
Kruger	1.1E-05	1.1E-07	0.01	
Kozeny-Carmen	4.8E-06	4.8E-08	0.00	
Zunker	3.2E-06	3.2E-08	0.00	
Zamarin	3.9E-06	3.9E-08	0.00	
USBR	1.1E-07	1.1E-09	0.00	
Barr	8.8E-08	8.8E-10	0.00	
Alyamani and Sen	1.6E-07	1.6E-09	0.00	
Chapuis	2.3E-09	2.3E-11	0.00	
Krumbein and Monk	5.5E-02	5.5E-04	47.68	
geometric mean	1.7E-06	1.7E-08	0.00	
arithmetic mean	5.5E-03	5.5E-05	4.77	

Sample Name: BH3 SS12

Mass Sample (g): T (oC) 20

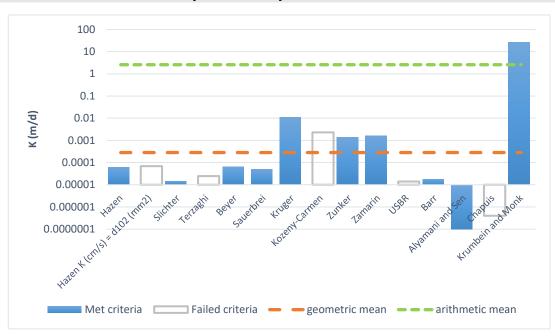
Poorly sorted silt low in fines


Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	2.9E-06	2.9E-08	0.00	
Hazen K (cm/s) = d_{10} (mm)	5.0E-06	5.0E-08	0.00	
Slichter	5.8E-07	5.8E-09	0.00	
Terzaghi	8.3E-07	8.3E-09	0.00	
Beyer	3.3E-06	3.3E-08	0.00	
Sauerbrei	1.7E-06	1.7E-08	0.00	
Kruger	2.7E-05	2.7E-07	0.02	
Kozeny-Carmen	1.5E-05	1.5E-07	0.01	
Zunker	1.1E-05	1.1E-07	0.01	
Zamarin	1.4E-05	1.4E-07	0.01	
USBR	2.0E-06	2.0E-08	0.00	
Barr	6.2E-07	6.2E-09	0.00	
Alyamani and Sen	4.6E-05	4.6E-07	0.04	
Chapuis	2.3E-08	2.3E-10	0.00	
Krumbein and Monk	1.1E-02	1.1E-04	9.86	
geometric mean	1.0E-05	1.0E-07	0.01	
arithmetic mean	1.2E-03	1.2E-05	1.00	

Sample Name: BH4 SS15

Mass Sample (g): 100 T (oC) 20

Poorly sorted clay low in fines

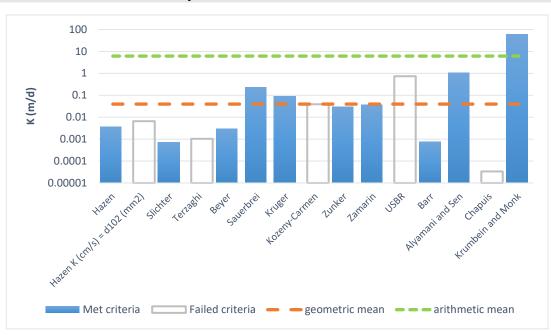

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	1.9E-07	1.9E-09	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	2.3E-07	2.3E-09	0.00	
Slichter	4.5E-08	4.5E-10	0.00	
Terzaghi	7.2E-08	7.2E-10	0.00	
Beyer	2.0E-07	2.0E-09	0.00	
Sauerbrei	1.5E-07	1.5E-09	0.00	
Kruger	8.2E-06	8.2E-08	0.01	
Kozeny-Carmen	3.5E-06	3.5E-08	0.00	
Zunker	2.2E-06	2.2E-08	0.00	
Zamarin	2.7E-06	2.7E-08	0.00	
USBR	5.4E-08	5.4E-10	0.00	
Barr	5.2E-08	5.2E-10	0.00	
Alyamani and Sen	2.3E-08	2.3E-10	0.00	
Chapuis	1.3E-09	1.3E-11	0.00	
Krumbein and Monk	6.3E-02	6.3E-04	54.17	
geometric mean	1.0E-06	1.0E-08	0.00	
arithmetic mean	6.3E-03	6.3E-05	5.42	

Sample Name: BH7 SS17

Mass Sample (g): 100 T (oC) 20

Poorly sorted clay low in fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	7.2E-08	7.2E-10	0.00	
Hazen K (cm/s) = d_{10} (mm)	7.9E-08	7.9E-10	0.00	
Slichter	1.7E-08	1.7E-10	0.00	
Terzaghi	2.8E-08	2.8E-10	0.00	
Beyer	7.4E-08	7.4E-10	0.00	
Sauerbrei	5.8E-08	5.8E-10	0.00	
Kruger	1.3E-05	1.3E-07	0.01	
Kozeny-Carmen	2.6E-06	2.6E-08	0.00	
Zunker	1.6E-06	1.6E-08	0.00	
Zamarin	1.9E-06	1.9E-08	0.00	
USBR	1.6E-08	1.6E-10	0.00	
Barr	2.0E-08	2.0E-10	0.00	
Alyamani and Sen	1.2E-10	1.2E-12	0.00	
Chapuis	4.6E-10	4.6E-12	0.00	
Krumbein and Monk	3.0E-02	3.0E-04	25.93	
geometric mean	3.3E-07	3.3E-09	0.00	
arithmetic mean	3.0E-03	3.0E-05	2.59	

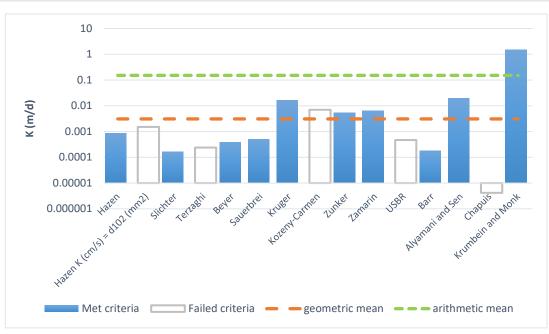

01-Mar-22

Date:

Sample Name: **BH7 SS22**

T (oC) 100 Mass Sample (g): 20

Poorly sorted sand low in fines


Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	4.3E-06	4.3E-08	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	7.6E-06	7.6E-08	0.01	
Slichter	8.4E-07	8.4E-09	0.00	
Terzaghi	1.2E-06	1.2E-08	0.00	
Beyer	3.5E-06	3.5E-08	0.00	
Sauerbrei	2.7E-04	2.7E-06	0.23	
Kruger	1.1E-04	1.1E-06	0.09	
Kozeny-Carmen	4.5E-05	4.5E-07	0.04	
Zunker	3.5E-05	3.5E-07	0.03	
Zamarin	4.3E-05	4.3E-07	0.04	
USBR	8.5E-04	8.5E-06	0.73	
Barr	9.0E-07	9.0E-09	0.00	
Alyamani and Sen	1.2E-03	1.2E-05	1.05	
Chapuis	3.8E-08	3.8E-10	0.00	
Krumbein and Monk	7.0E-02	7.0E-04	60.20	
geometric mean	4.6E-05	4.6E-07	0.04	
arithmetic mean	7.1E-03	7.1E-05	6.16	

Sample Name: BH7 SS26

Mass Sample (g): T (oC) 20

Poorly sorted silt low in fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	9.9E-07	9.9E-09	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	1.7E-06	1.7E-08	0.00	
Slichter	1.9E-07	1.9E-09	0.00	
Terzaghi	2.8E-07	2.8E-09	0.00	
Beyer	4.5E-07	4.5E-09	0.00	
Sauerbrei	5.7E-07	5.7E-09	0.00	
Kruger	1.9E-05	1.9E-07	0.02	
Kozeny-Carmen	8.1E-06	8.1E-08	0.01	
Zunker	6.3E-06	6.3E-08	0.01	
Zamarin	7.5E-06	7.5E-08	0.01	
USBR	5.4E-07	5.4E-09	0.00	
Barr	2.1E-07	2.1E-09	0.00	
Alyamani and Sen	2.2E-05	2.2E-07	0.02	
Chapuis	4.9E-09	4.9E-11	0.00	
Krumbein and Monk	1.7E-03	1.7E-05	1.48	
geometric mean	3.6E-06	3.6E-08	0.00	
arithmetic mean	1.8E-04	1.8E-06	0.15	

$$K = \frac{\rho g}{u} N \varphi(n) d_e^2$$

the following values and equations are substituted into the appropriate terms to evalute the models listed in the table below. The values of d_c to be entered should be in cm units. The values of K calculated have the units cm/s, except for the Alyamani and Sen model (see footnote).

Source	N φ(n)		d _e	Applicable Conditions	
Hazen simplified (Freeze and Cherry, 1979)	$10 \frac{\mu}{\rho g}$	1	d ₁₀	uniformly graded sand, n = 0.375 $T = 10 \circ C$	
Hazen (1892) ^a	6 × 10 ⁻⁴	[1+10(n-0.26)]	d ₁₀	0.01 cm < d ₁₀ < 0.3 cm U < 5	
Slichter (1898) ^a	1 × 10 ⁻²	n ^{3.287}	d ₁₀	0.01 cm < d ₁₀ < 0.5 cm	
Terzaghi (1925) ^a	$10.7\times 10^{-3} \text{ smooth grains} \\ 6.1\times 10^{-3} \text{ coarse grains}$	$\left(\frac{n-0.13}{\sqrt[3]{1-n}}\right)^2$	d ₁₀	sandy soil, coarse sand	
Beyer (1964) ^a	$5.2\times10^{-4}\mathrm{log}\frac{500}{U}$	1	d ₁₀	0.006 cm < d ₁₀ <0.06 cm 1 < U < 20	
Sauerbrei (1932) ^a (Vuković and Soro, 1992)	$(3.75 \times 10^{-5}) \times \tau$ $\tau \cong 1.093 \times 10^{-4} T^{2}$ $+ 2.102 \times 10^{-2} T$ $+ 0.5889$	$\frac{n^3}{(1-n)^2}$	d ₁₇	sand and sandy clay $d_{17} < 0.05$ cm	
Krüger (1919) ^a	4.35 × 10 ⁻⁴	$\frac{n}{(1-n)^2}$	$\frac{1}{\sum_{i=1}^{n} \frac{\Delta w_i}{d_i}}$	medium sand U > 5 T = 0 °C	
Kozeny- Carmen (1953) ^a	8.3 × 10 ⁻³	$\frac{n^3}{(1-n)^2}$	$\frac{d_{10}}{\int\limits_{0}^{0}} \frac{d_{1}^{n}}{1} + \sum_{i=2}^{n} \Delta g_{i} \frac{d_{i}^{n} + d_{i}^{n}}{2d_{i}^{n}d_{i}^{d}}$ $d_{1} = \frac{1}{\frac{1}{2}\left(\frac{1}{d_{i}^{n}} + \frac{1}{d_{i}^{d}}\right)}$	Coarse sand	
Zunker (1930)ª	0.7 × 10 ⁻³ for nonuniform, clayey, angular grains 1.2 × 10 ⁻³ for nonuniform 1.4 × 10 ⁻³ for uniform, coarse grains 2.4 × 10 ⁻³ for uniform sand, well rounded grains	$\frac{n}{(1-n)}$	$\frac{1}{\sum_{i=1}^{n} \Delta g_{i} \frac{d_{i}^{\mathrm{g}} - d_{i}^{\mathrm{d}}}{d_{i}^{\mathrm{g}} d_{i}^{\mathrm{d}} \ln \left(\frac{d_{i}^{\mathrm{g}}}{d_{i}^{\mathrm{d}}}\right)}}$	no fractions finer than <i>d</i> = 0.0025 mm	
Zamarin (1928)ª	8.65 × 10 ⁻³	$\frac{n^3}{(1-n)^2} C_n$ $C_n = (1.275 - 1.5n)^2$	$rac{1}{\sum_{i=1}^{n} \Delta g_i rac{\ln\left(rac{d_i^{\mathrm{g}}}{d_i^{\mathrm{d}}} ight)}{d_i^{\mathrm{g}} - d_i^{\mathrm{d}}}}$	Large grained sands with no fractions having d < 0.00025 mm	
USBR (United States Bureau of Reclamation) (Bialas, 1966) ²	(4.8 × 10 ⁻⁴)(10 ^{0.3})	1.0	$d_{20}^{1.15}$	Medium grained sands with $U < 5$; derived for $T = 15$ °C	
Barr (2001)	$\frac{1}{(36)5C_s^2}$ $C_s^2 = 1$ for spherical grains $C_s^2 = 1.35$ for angular grains	$\frac{n^3}{(1-n)^2} \qquad d_{10}$		unspecified	
Alyamani and Sen (1993)	1300	1.0	$[I_0 + 0.025(d_{50} - d_{10})]$	unspecified	
Chapuis (2004)	$\frac{\mu}{\rho g}$	$10^{1.291\xi - 0.6435}$ $\xi = \frac{n}{1 - n}$	$d_{10} \binom{10^{(0.5304-0.2937\xi)}}{2}$	0.3 < n < 0.7 0.10 < d ₁₀ < 2.0 mm 2 < U < 12 d ₁₀ /d ₅ < 1.4	
Krumbein and Monk (1942)	7,501 × 10 ⁻⁶	$e^{(-1.31 \times \sigma_0)}$ $\sigma_0 = \frac{d_{040} - d_{160}}{d_{030} - d_{50}}$ 6.6	$2^{\left(\frac{d_{160}+d_{500}+d_{640}}{3}\right)}$	natural sands with lognormal grain size distribution	

 * indicates formulas were taken from Vuković and Soro, (1992) N= constant dependent on characteristics of the porous medium

N = constant dependent on characteristics of the porous medium $\varphi(n)$ = function of porosity T = water temp. (°C) g = 980 cm s² ρ = 3.1 × 10° T² - 7.0 × 10° T² + 4.19 × 10° T + 0.99985 μ = -7.0 × 10° T³ + 1.002 × 10° T² - 5.7 × 10° T + 0.0178 τ = 1.093 × 10° T² + 2.102 × 10° T + 0.5889 η = porosity as fraction of aquifer volume $d\beta$ = the maximum grain diameter in fraction i $d\beta$ = the minimum grain diameter in fraction i $d\beta$ = grain size (cm) corresponding to 10% by weight passing through the sieves $d\beta$ 00 = grain size (cm) corresponding to 50% by weight passing through the sieves $d\beta$ 00 = grain size (cm) corresponding to 50% by weight passing through the sieves $d\beta$ 00 = grain size (cm) corresponding to 60% by weight passing through the sieves

 d_{60} = grain size (cm) corresponding to 60% by weight passing through the sieves $U=d_{60}/d_{10}$

 Δg_i = the fraction of mass that passes between sieves i and i+1 where i is the smaller sieve Δw_i = fraction of total weight of sample with fraction identifier 'i' d_i = mean grain diameter of the fraction i

 $d_{i\phi}$ = mean grain diameter of the fraction i in phi units (ϕ = $\log_2 \left(d_c/d_o\right)$, d_c in mm, d_o = 1 mm) l_o = x-intercept (grain size) of a percent grain retention curve plotted on arithmetic axes and focussing on data

below 50% retained

References

- (1) Aguilar, J.R. 2013. Analysis of grain size distribution and hydraulic conductivity for a variety of sediment types with application to wadi sediments. M.B2:B19S. thesis submitted to King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia, 134 pp.
- (2) Alyamani, M.S., Sen Z. 1993. Determination of hydraulic conductivity from complete grain-size distribution curves. Ground Water, v. 31, no. 4, 551-555.
- (3) Barr, D.W. 2001. Coefficient of permeability determined by measurable parameters. Ground Water, v. 39, no. 3, 356-361.
- (4) Barth, G.R., Hill, M.C., Illangasekare, T.H., Rajaram, H. 2001. Predictive modeling of flow and transport in a two-dimensional intermediate-scale, heterogeneous porous medium. Water Resources Research, v. 37, no. 10, 2503–2512.
- (5) Beyer, W. 1964. "Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilungskurve." Wasserwirtschaft-Wassertechnik 14(6): 165-168.
- (6) Białas, Z. (1966). O usrednianiu wspolczynnikow filtracji z zastosowaniem elektronicznej cyfrowej maszyny matematycznej (Averaging filter coefficients using digital electronic mathematical machines). Przedsiebiorstwo Geologiczne we Wrocławiu: 47-50.
- (7) Chapuis, R.P. 2004. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Canadian Geotechnical Journal, v. 41, 787–795.
- (8) Devlin, J.F. (2015). HydrogeoSieveXL. Excel-based Visual Basic tool freely available at http://www.people.ku.edu/~jfdevlin/Publications.html. Cited 18 February, 2015.
- (9) Dullien, F.A., 1991. Fluid Transport and Pore Structure. Academic Press, San Diego, CA.
- (10) Freeze, R.A., Cherry, J.A. 1979. Groundwater. Prentice Hall, Englewood Cliffs, New Jersey.
- (11) Fuchs, S. (2010) Deterministische kf-Wert-Schätzung nach petrographischer Bohrgutansprache (Deterministic kf value estimation from petrographic borehole records). Grundwasser Zeitschrift der Fachsektion Hydrogeologie 15: 177–189.
- (12) Hazen, A. 1892. Some physical properties of sands and gravels, with special reference to their use in filtration. Massachusetts State Board of Health, vol. 24th annual report, pp. 539-556.
- (13) Kasenow, M., 2002, Determination of Hydraulic Conductivity from Grain Size Analysis: Water Resources Publications, LLC, Highlands Ranch, Colorado, 97p.
- (14) Kozeny, J. (1953). Das Wasser im Boden. Grundwasserbewegung (The water in the ground. Groundwater flow). Hydraulik, Springer, p 380-445.
- (15) Krüger, E., 1919. Die Grundwasserbewegung (Groundwater flow). Int. Mitt. Bodenk. 8, 105–122.
- (16) Krumbein, W.C., Monk, G.D. 1942. Permeability as a function of the size parameters of unconsolidated sand. American Institute of Mining and Metallurgical Engineers, Transactions v. 151, 153-163.
- (17) Moreau, J.P. Program to demonstrate the Akima spline fitting of Function SIN(X) in double precision. http://jean-pierre.moreau.pagesperso-orange.fr/Fortran/akima f90.txt . Cited 30 January, 2015.
- (18) Odong, J. 2013. Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. International Journal of Agriculture and Environment, v. 1, 1-8.
- (19) Rosas, J., Lopez, O., Missimer, T.M., Coulibaly, K.M., Dehwah, A.H.A., Sesler, K., Lujan, L.R., Mantilla, D. 2014. Determination of hydraulic conductivity from grain-size distribution for different depositional environments. Groundwater, v. 52, no. 3, 399-413.
- (20) Slichter, C.S., 1898, Theoretical investigations of the motion of ground waters: United States Geological Survey, 19 th Annual Report, p 295-384.
- (21) Terzaghi, K., 1925, Principles of soil mechanics: Engineering News-Record, v. 95, p 832.
- (22) Urumovic, K., Urumovic, K. Sr. 2106. The referential grain size and effective porosity in the Kozeny–Carman model. Hydrological Earth System Science, v. 20, 1669-1680.
- (23) Vukovic, M., Soro, A. 1992. Determination of hydraulic conductivity of porous media from grain-size composition. Miladinov, D., translator, Water Resources Publications, Littleton, Colorado, USA, 83 pp.
- (24) Zamarin, J.A. 1928. Calculation of ground-water flow (in Russian). Trudey I.V.H. Taskeni.
- Zunker, F. (1930). Das Verhalten des Wassers zum Boden (The behavior of groundwater). Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde. A25(1): 7.

APPENDIX E

Grounded Engineering Inc

ATTN: Shelby Plant 1 Banigan Drive

TORONTO ON M4H 1G3

Date Received: 16-FEB-22

Report Date: 28-FEB-22 09:15 (MT)

Version: FINAL

Client Phone: 647-264-7928

Certificate of Analysis

Lab Work Order #: L2686534
Project P.O. #: NOT SUBMITTED

Job Reference: 21-195

C of C Numbers:

Legal Site Desc: 48 GRENOBLE DR.

Amanda Overholster Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2686534 CONT'D.... Job Reference: 21-195 PAGE 2 of 18 28-FEB-22 09:15 (MT)

Summary of Guideline Exceedances

Suideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
(No pa	rameter exceedances)	,	016) - Ontario Toronto Sanitary Dischar 016) - Ontario Toronto Storm Sewer By-			
.2686534-1	SW-UF-BH2	Physical Tests	Total Suspended Solids	246	15	mg/L
		Cyanides	Cyanide, Total	0.0711	0.02	mg/L
		Total Metals	Copper (Cu)-Total	< 0.050	0.04	mg/L
			Manganese (Mn)-Total	0.384	0.05	mg/L
			Zinc (Zn)-Total	<0.30	0.04	mg/L
		Aggregate Organics	BOD	40.5	15	mg/L

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D.... Job Reference: 21-195 PAGE 3 of 18 28-FEB-22 09:15 (MT)

Physical Tests - WATER

i ilyalcai i cala - WAILIN				
			Lab ID	L2686534-1
	,	Sampl	e Date	16-FEB-22
		-	ple ID	SW-UF-BH2
	1	Guide	Limits	
Analyte	Unit	#1	#2	
рН	pH units	6.00- 11.5	6.0-9.5	7.48
Total Suspended Solids	mg/L	350	15	246

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D....

Job Reference: 21-195
PAGE 4 of 18
28-FEB-22 09:15 (MT)

Anions and Nutrients - WATER

		Sample	Lab ID e Date iple ID	L2686534-1 16-FEB-22 SW-UF-BH2
Analyte	Unit	Guide #1	Limits #2	
Fluoride (F)	mg/L	10	-	<1.0 DLDS
Total Kjeldahl Nitrogen	mg/L	100	-	3.55
Phosphorus, Total	mg/L	10	0.4	<0.30 DLM

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D.... Job Reference: 21-195 PAGE 5 of 18 28-FEB-22 09:15 (MT)

Cvanides - WATER

		Sampl	Lab ID le Date	L2686534-1 16-FEB-22 SW-UF-BH2
		Guide	Limits	GVV-OI -DI IZ
Analyte	Unit	#1	#2	
Cyanide, Total	mg/L	2	0.02	0.0711

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D....

Job Reference: 21-195
PAGE 6 of 18
28-FEB-22 09:15 (MT)

Bacteriological Tests - WATER

	•• •••			
			Lab ID	L2686534-1
		Samp	le Date	16-FEB-22
		San	nple ID	SW-UF-BH2
		Guide	Limits	
Analyte	Unit	#1	#2	
E. Coli	CFU/100)m -	200	0
	L			

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D.... Job Reference: 21-195 PAGE 7 of 18 28-FEB-22 09:15 (MT)

Total Metals - WATER

		Lab ID Sample Date Sample ID		
Analyte	Unit	Guide #1	Limits #2	
Aluminum (Al)-Total	mg/L	50	-	1.82 DLHC
Antimony (Sb)-Total	mg/L	5	-	<0.010 ^{DLHC}
Arsenic (As)-Total	mg/L	1	0.02	<0.010 ^{DLHC}
Cadmium (Cd)-Total	mg/L	0.7	0.008	< 0.00050 DLHC
Chromium (Cr)-Total	mg/L	4	0.08	< 0.050 DLHC
Cobalt (Co)-Total	mg/L	5	-	<0.010 ^{DLHC}
Copper (Cu)-Total	mg/L	2	0.04	<0.050 ^{DLHC}
Lead (Pb)-Total	mg/L	1	0.12	<0.0050 DLHC
Manganese (Mn)-Total	mg/L	5	0.05	0.384 DLHC
Mercury (Hg)-Total	mg/L	0.01	0.0004	<0.0000050
Molybdenum (Mo)-Total	mg/L	5	-	0.0257 ^{DLHC}
Nickel (Ni)-Total	mg/L	2	0.08	< 0.050 DLHC
Selenium (Se)-Total	mg/L	1	0.02	< 0.0050 DLHC
Silver (Ag)-Total	mg/L	5	0.12	< 0.0050 DLHC
Tin (Sn)-Total	mg/L	5	-	<0.010 ^{DLHC}
Titanium (Ti)-Total	mg/L	5	-	0.050 DLHC
Zinc (Zn)-Total	mg/L	2	0.04	<0.30 DLHC

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D.... Job Reference: 21-195 PAGE 8 of 18 28-FEB-22 09:15 (MT)

Speciated Metals - WATER

operated metals 11711=	• •			
			Lab ID	L2686534-1
		Samp	le Date	16-FEB-22
		San	nple ID	SW-UF-BH2
		0	1 ::4-	
		Guiae	Limits	
Analyte	Unit	#1	#2	
Chromium, Hexavalent	mg/L	2	0.04	<0.00050

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D....

Job Reference: 21-195
PAGE 9 of 18
28-FEB-22 09:15 (MT)

Aggregate Organics - WATER

		Sampl	Lab ID e Date iple ID	L2686534-1 16-FEB-22 SW-UF-BH2
Analyte	Unit	Guide #1	Limits #2	
BOD	mg/L	300	15	40.5
Oil and Grease, Total	mg/L	-	-	<5.0
Animal/Veg Oil & Grease	mg/L	150	-	<5.0
Mineral Oil and Grease	mg/L	15	-	<2.5

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D....

Job Reference: 21-195
PAGE 10 of 18
28-FEB-22 09:15 (MT)

Volatile Organic Compounds - WATER

Lab ID	L2686534-1
Sample Date	16-FEB-22
Sample ID	SW-UF-BH2

	l lm!t	Guide		
Analyte	Unit	#1	#2	
Benzene	ug/L	10	2	<0.50
Chloroform	ug/L	40	2	1.1
1,2-Dichlorobenzene	ug/L	50	5.6	<0.50
1,4-Dichlorobenzene	ug/L	80	6.8	<0.50
cis-1,2-Dichloroethylene	ug/L	4000	5.6	<0.50
Dichloromethane	ug/L	2000	5.2	<2.0
trans-1,3-Dichloropropene	ug/L	140	-	<0.50
Ethylbenzene	ug/L	160	2	<0.50
1,1,2,2-Tetrachloroethane	ug/L	1400	17	<0.50
Tetrachloroethylene	ug/L	1000	4.4	<0.50
Toluene	ug/L	16	2	0.56
Trichloroethylene	ug/L	400	7.6	<0.50
o-Xylene	ug/L	-	-	<0.50
m+p-Xylenes	ug/L	-	-	<1.0
Xylenes (Total)	ug/L	1400	4.4	<1.1
Surrogate: 4-Bromofluorobenzene	%	-	-	97.0
Surrogate: 1,4-Difluorobenzene	%	-	-	100.0

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D....

Job Reference: 21-195

PAGE 11 of 18

28-FEB-22 09:15 (MT)

Polycyclic Aromatic Hydrocarbons - WATER

 Lab ID
 L2686534-1

 Sample Date
 16-FEB-22

 Sample ID
 SW-UF-BH2

	11:4	Guide		
Analyte	Unit	#1	#2	
Acenaphthene	ug/L	-	-	<0.025 ^{DLM}
Anthracene	ug/L	-	-	<0.025 ^{DLM}
Benzo(a)anthracene	ug/L	-	-	<0.030 ^{RRR}
Benzo(a)pyrene	ug/L	-	-	<0.025 ^{DLM}
Benzo(b&j)fluoranthene	ug/L	-	-	0.025 DLM
Benzo(e)pyrene	ug/L	-	-	<0.050
Benzo(ghi)perylene	ug/L	-	-	0.028 DLM
Benzo(k)fluoranthene	ug/L	-	-	<0.025 ^{DLM}
Chrysene	ug/L	-	-	0.039 DLM
Dibenz(a,h)acridine	ug/L	-	-	<0.050
Dibenz(a,j)acridine	ug/L	-	-	<0.050
Dibenz(a,h)anthracene	ug/L	-	-	<0.025 ^{DLM}
Dibenzo(a,i)pyrene	ug/L	-	-	<0.050
7H-Dibenzo(c,g)carbazole	ug/L	-	-	<0.070 ^{DLQ}
1,3-Dinitropyrene	ug/L	-	-	<1.0
1,6-Dinitropyrene	ug/L	-	-	<1.0
1,8-Dinitropyrene	ug/L	-	-	<1.0
Fluoranthene	ug/L	-	-	0.079 R
Fluorene	ug/L	-	-	<0.025 ^{DLM}
Indeno(1,2,3-cd)pyrene	ug/L	-	-	<0.025 ^{DLM}
Naphthalene	ug/L	-	-	<0.040 ^{DLB}
Perylene	ug/L	-	-	<0.025 ^{DLM}
Phenanthrene	ug/L	-	-	0.058 R
Pyrene	ug/L	-	-	0.109 DLM
Surrogate: 2-Fluorobiphenyl	%	-	-	66.1
Surrogate: D14-Terphenyl	%	-	-	68.0
Surrogate: d14-Terphenyl	%	-	-	79.7
Total PAHs	ug/L	5	2	<1.7

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D.... Job Reference: 21-195 PAGE 12 of 18 28-FEB-22 09:15 (MT)

Semi-Volatile Organics - WATER

				_ab ID	L2686534-1
			Sample	e Date	16-FEB-22
			Sam	ple ID	SW-UF-BH2
			Guide	Limits	
Analyte	U	nit	#1	#2	
3,3-Dichlorobenzidine	u	g/L	2	0.8	<0.40
Di-n-butylphthalate	u	g/L	80	15	<1.0
Bis(2-ethylhexyl)phthalate	u	g/L	12	8.8	<2.0
Pentachlorophenol	u	g/L	5	2	<2.0 RRR
Surrogate: 2-Fluorobiphenyl		%	-	-	54.9
Surrogate: p-Terphenyl d14		%	-	-	60.0
Surrogate: 2,4,6-Tribromophenol		%	-	-	105.8

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D....

Job Reference: 21-195
PAGE 13 of 18
28-FEB-22 09:15 (MT)

Polychlorinated Biphenyls - WATER

- 3				
			Lab ID	L2686534-1
		Sampl	e Date	16-FEB-22
		San	iple ID	SW-UF-BH2
Analyte	Unit	Guide #1	Limits #2	
Aroclor 1242	ug/L	-	-	<0.020
Aroclor 1248	ug/L	-	-	<0.020
Aroclor 1254	ug/L	-	-	<0.020
Aroclor 1260	ug/L	-	-	<0.020
Surrogate: Decachlorobiphenyl	%	-	-	50.5
Total PCBs	ug/L	1	0.4	<0.040
Surrogate: Tetrachloro-m-xylene	%	-	-	82.1

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2686534 CONT'D....

Job Reference: 21-195
PAGE 14 of 18
28-FEB-22 09:15 (MT)

Organic Parameters - WATER

		Sampl	Lab ID e Date iple ID	L2686534-1 16-FEB-22 SW-UF-BH2
Analyte	Unit	Guide #1	Limits #2	
Nonylphenol	ug/L	20	1	<1.0
Nonylphenol Diethoxylates	ug/L	-	-	<0.10
Total Nonylphenol Ethoxylates	ug/L	200	10	<2.0
Nonylphenol Monoethoxylates	ug/L	-	-	<2.0

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

Reference Information

L2686534 CONT'D....
Job Reference: 21-195
PAGE 15 of 18
28-FEB-22 09:15 (MT)

Additional Comments for Sample Listed:

Samplenum	Matrix	Report Remarks	Sample Comments
L2686534-1	Water	Note: RRR; The Reporting Limit has been raised due to possible instrument background interference.	
L2686534-1	Water	Note: RRR: Detection limit raised due to bias low analyte response in continuing calibration standard.	

Qualifiers for Individual Parameters Listed:

_	Qualifier	Description			
	R	The ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.			
	DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.			
	DLQ	Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.			
	DLB	ction Limit Raised. Analyte detected at comparable level in Method Blank.			
	DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).			
	DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).			
	RRR	Refer to Report Remarks for issues regarding this analysis			

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference**
625-PAH-LOW-WT	Water	EPA 8270 PAH (Low Level)	SW846 8270

Aqueous samples are extracted and extracts are analyzed on GC/MSD. Depending on the analytical GC/MS column used benzo(j)fluoranthene may chromatographically co-elute with benzo(b)fluoranthene or benzo(k)fluoranthene.

625-SAN-WT Water Ontario Sanitary Sewer SVOC Target SW-846 8270

List

Samples are extracted with solvent and then analyzed by GC/MS.

BOD-WT Water BOD APHA 5210 B

This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a class fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation.

CN-TOT-WT Water Cyanide, Total ISO 14403-2

Total cyanide is determined by the combination of UV digestion and distillation. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

When using this method, high levels of thiocyanate in samples can cause false positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, ALS recommends analysis for thiocyanate to check for this potential interference

CR-CR6-IC-WT Water Chromium +6 EPA 7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-SCREEN-WT

Water Conductivity Screen (Internal Use

APHA 2510

Reference Information

L2686534 CONT'D.... Job Reference: 21-195 PAGE 16 of 18 28-FEB-22 09:15 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix **Test Description** Method Reference**

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

EC-WW-MF-WT

Water

F. Coli

SM 9222D

A 100 mL volume of sample is filtered through a membrane, the membrane is placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200

F-IC-N-WT

Water

Fluoride in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

HG-T-CVAA-WT

Water

Total Mercury in Water by CVAAS

EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WT

Water

Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

NP,NPE-LCMS-WT

Water

Nonylphenols and Ethoxylates by

J. Chrom A849 (1999) p.467-482

LC/MS-MS

Water samples are filtered and analyzed on LCMS/MS by direct injection.

OGG-SPEC-CALC-WT

Water

Speciated Oil and Grease A/V Calc

CALCULATION

Sample is extracted with hexane, sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then determined gravimetrically.

OGG-SPEC-WT

Water

Speciated Oil and Grease-Gravimetric APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. Sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then determined gravimetrically.

P-T-COL-WT

Water

Total P in Water by Colour

APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.

PAH-EXTRA-WT

Water

Sanitary Sewer Use By-Law Additional SW 846 8270

PAH-SUM-CALC-WT

Water

TOTAL PAH's

PAH

CALCULATION

Total PAH represents the sum of all PAH analytes reported for a given sample. Note that regulatory agencies and criteria differ in their definitions of Total PAH in terms of the individual PAH analytes to be included.

PCB-WT

Water

Polychlorinated Biphenyls

EPA 8082

PCBs are extracted from an aqueous sample at neutral pH with aliquots of dichloromethane using a modified separatory funnel technique. The extracts are analyzed by GC/MSD.

Reference Information

L2686534 CONT'D....
Job Reference: 21-195
PAGE 17 of 18
28-FEB-22 09:15 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

PH-WT Water pH APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for

samples under this regulation is 28 days

PHENOLS-4AAP-ED Water Phenols (4AAP) EPA 9066 AUTO-DISTILL-COLORIMETRIC

This automated method is based on the distillation of phenol and subsequent reaction of the distillate with an oxidizing agent (alkaline potassium ferricyanide), and 4-aminoantipyrine to form a red

complex which is measured at 505 nm. The method will include ortho and meta-substituted phenols, and is collectively named 4AAP phenols.

SOLIDS-TSS-WT Water Suspended solids APHA 2540 D-Gravimetric

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achieved.

TKN-F-WT Water TKN in Water by Fluorescence J. ENVIRON. MONIT., 2005,7,37-42,RSC

Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection

VOC-ROU-HS-WT Water Volatile Organic Compounds SW846 8260

Aqueous samples are analyzed by headspace-GC/MS.

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

ED

ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA

Reference Information

L2686534 CONT'D.... Job Reference: 21-195 PAGE 18 of 18 28-FEB-22 09:15 (MT)

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2686534 Report Date: 28-FEB-22 Page 1 of 11

Client: Grounded Engineering Inc

1 Banigan Drive

TORONTO ON M4H 1G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-PAH-LOW-WT	Water							
Batch R5728371								
WG3697929-2 LCS			05.0		0/			
Acenaphthene			85.3		%		50-130	23-FEB-22
Anthracene			91.5		%		60-130	23-FEB-22
Benzo(a)anthracene			99.3		%		60-140	23-FEB-22
Benzo(a)pyrene			87.2		%		60-130	23-FEB-22
Benzo(b&j)fluoranthene			93.5		%		60-130	23-FEB-22
Benzo(ghi)perylene			86.0		%		50-140	23-FEB-22
Benzo(k)fluoranthene			81.4		%		60-130	23-FEB-22
Chrysene			88.9		%		60-140	23-FEB-22
Dibenz(a,h)anthracene			89.0		%		60-130	23-FEB-22
Fluoranthene			93.8		%		60-130	23-FEB-22
Fluorene			89.9		%		60-130	23-FEB-22
Indeno(1,2,3-cd)pyrene			97.2		%		60-140	23-FEB-22
Naphthalene			89.4		%		50-130	23-FEB-22
Perylene			84.0		%		60-130	23-FEB-22
Phenanthrene			86.1		%		60-130	23-FEB-22
Pyrene			94.5		%		60-130	23-FEB-22
WG3697929-1 MB			0.040				0.04	
Acenaphthene			<0.010		ug/L		0.01	23-FEB-22
Anthracene			<0.010		ug/L		0.01	23-FEB-22
Benzo(a)anthracene			<0.010		ug/L		0.01	23-FEB-22
Benzo(a)pyrene			<0.010		ug/L		0.01	23-FEB-22
Benzo(b&j)fluoranthene			<0.010		ug/L		0.01	23-FEB-22
Benzo(ghi)perylene			<0.010		ug/L		0.01	23-FEB-22
Benzo(k)fluoranthene			<0.010		ug/L		0.01	23-FEB-22
Chrysene			<0.010		ug/L		0.01	23-FEB-22
Dibenz(a,h)anthracene			0.013	MB-LOR	ug/L		0.01	23-FEB-22
Fluoranthene			<0.010		ug/L		0.01	23-FEB-22
Fluorene			<0.010		ug/L		0.01	23-FEB-22
Indeno(1,2,3-cd)pyrene			<0.010		ug/L		0.01	23-FEB-22
Naphthalene			0.020	MB-LOR	ug/L		0.01	23-FEB-22
Perylene			<0.010		ug/L		0.01	23-FEB-22
Phenanthrene			<0.010		ug/L		0.01	23-FEB-22
Pyrene			<0.010		ug/L		0.01	23-FEB-22
Surrogate: 2-Fluorobiphe	enyl		86.6		%		40-130	23-FEB-22

Workorder: L2686534 Report Date: 28-FEB-22 Page 2 of 11

Grounded Engineering Inc Client:

1 Banigan Drive

TORONTO ON M4H 1G3

Contact: Shelby Plant

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-PAH-LOW-WT	Water							
Batch R5728371 WG3697929-1 MB Surrogate: D14-Terphe			88.3		%		40-130	23-FEB-22
625-SAN-WT	Water							
Batch R5728527								
WG3697929-2 LCS 3,3-Dichlorobenzidine			64.6		%		50-140	23-FEB-22
Bis(2-ethylhexyl)phthala	ate		99.1		%		50-140	23-FEB-22
Di-n-butylphthalate			86.1		%		50-140	23-FEB-22
Pentachlorophenol			58.2		%		50-140	23-FEB-22
WG3697929-1 MB 3,3-Dichlorobenzidine			<1.0	RRQC	ug/L		0.4	23-FEB-22
Bis(2-ethylhexyl)phthala	ate		<2.0		ug/L		2	23-FEB-22
Di-n-butylphthalate			<1.0		ug/L		1	23-FEB-22
Pentachlorophenol			<1.0	RRQC	ug/L		0.5	23-FEB-22
Surrogate: 2-Fluorobiph	nenyl		89.3		%		40-130	23-FEB-22
Surrogate: 2,4,6-Tribro	mophenol		107.4		%		40-130	23-FEB-22
Surrogate: p-Terphenyl	d14		113.7		%		40-130	23-FEB-22
COMMENTS: RRQ	C: Detection limit	raised due to bias	low analyte	response in conf	tinuing calibratio	on standard.		
BOD-WT	Water							
Batch R5728545								
WG3697448-2 DUP BOD		L2686580-1 <2.0	<2.0	DDD MA	ma/l	N1/A	20	47 FED 00
		<2.0	<2.0	RPD-NA	mg/L	N/A	30	17-FEB-22
WG3697448-3 LCS BOD			99.0		%		85-115	17-FEB-22
WG3697448-1 MB								
BOD			<2.0		mg/L		2	17-FEB-22
CN-TOT-WT	Water							
Batch R5727301								
WG3697252-9 DUP Cyanide, Total		WG3697252-8 <0.0020	<0.0020	RPD-NA	mg/L	N/A	20	17-FEB-22
WG3697252-7 LCS Cyanide, Total			94.6		%		80-120	17-FEB-22
WG3697252-6 MB Cyanide, Total			<0.0020		mg/L		0.002	17-FEB-22
WG3697252-10 MS Cyanide, Total		WG3697252-8	91.3		%		70-130	17-FEB-22

Workorder: L2686534 Report Date: 28-FEB-22 Page 3 of 11

Client: Grounded Engineering Inc

1 Banigan Drive

TORONTO ON M4H 1G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CR-CR6-IC-WT Batch R5727402	Water							
WG3697380-4 DUP Chromium, Hexavalent		WG3697380-3 <0.00050	<0.00050	RPD-NA	mg/L	N/A	20	17-FEB-22
WG3697380-2 LCS Chromium, Hexavalent			93.2		%		80-120	17-FEB-22
WG3697380-1 MB Chromium, Hexavalent			<0.00050		mg/L		0.0005	17-FEB-22
WG3697380-5 MS Chromium, Hexavalent		WG3697380-3	91.3		%		70-130	17-FEB-22
EC-WW-MF-WT	Water							
Batch R5727463								
WG3697222-3 DUP E. Coli		L2686514-1 0	<10	RPD-NA	CFU/100mL	N/A	65	17-FEB-22
WG3697222-1 MB E. Coli			0		CFU/100mL		1	17-FEB-22
F-IC-N-WT	Water							
Batch R5728065 WG3697926-4 DUP Fluoride (F)		WG3697926-3 0.028	0.028		mg/L	0.6	20	18-FEB-22
WG3697926-2 LCS Fluoride (F)			101.2		%		90-110	18-FEB-22
WG3697926-1 MB Fluoride (F)			<0.020		mg/L		0.02	18-FEB-22
WG3697926-5 MS Fluoride (F)		WG3697926-3	100.0		%		75-125	18-FEB-22
HG-T-CVAA-WT	Water							
Batch R5727576								
WG3697726-3 DUP Mercury (Hg)-Total		L2686576-1 <0.0000050	<0.000005	C RPD-NA	mg/L	N/A	20	18-FEB-22
WG3697726-2 LCS Mercury (Hg)-Total			99.8		%		80-120	18-FEB-22
WG3697726-1 MB Mercury (Hg)-Total			<0.000005	С	mg/L		0.000005	18-FEB-22
WG3697726-4 MS Mercury (Hg)-Total		L2686577-1	100.0		%		70-130	18-FEB-22
MET-T-CCMS-WT	Water							

Workorder: L2686534 Report Date: 28-FEB-22 Page 4 of 11

Client: Grounded Engineering Inc

1 Banigan Drive

TORONTO ON M4H 1G3

Test	Matrix	latrix Reference Result Qualifier Units		RPD	Limit	Analyzed			
MET-T-CCMS-WT	Water								
Batch R5727599									
WG3697677-4 DUP Aluminum (Al)-Total		WG3697677- 0.0158	3 0.0152		mg/L	4.0	20	18-FEB-22	
Antimony (Sb)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	18-FEB-22	
Arsenic (As)-Total		0.00019	0.00021		mg/L	11	20	18-FEB-22	
Cadmium (Cd)-Total		0.0000240	0.0000227		mg/L	5.6	20	18-FEB-22	
Chromium (Cr)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	18-FEB-22	
Cobalt (Co)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	18-FEB-22	
Copper (Cu)-Total		0.00087	0.00087		mg/L	0.0	20	18-FEB-22	
Lead (Pb)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	18-FEB-22	
Manganese (Mn)-Total		0.00384	0.00382		mg/L	0.3	20	18-FEB-22	
Molybdenum (Mo)-Tota	I	0.000574	0.000556		mg/L	3.3	20	18-FEB-22	
Nickel (Ni)-Total		0.00106	0.00100		mg/L	5.6	20	18-FEB-22	
Selenium (Se)-Total		0.000131	0.000146		mg/L	11	20	18-FEB-22	
Silver (Ag)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	18-FEB-22	
Tin (Sn)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	18-FEB-22	
Titanium (Ti)-Total		<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	18-FEB-22	
Zinc (Zn)-Total		0.0187	0.0185		mg/L	1.1	20	18-FEB-22	
WG3697677-2 LCS Aluminum (Al)-Total			103.2		%		80-120	18-FEB-22	
Antimony (Sb)-Total			100.0		%		80-120	18-FEB-22	
Arsenic (As)-Total			98.4		%		80-120	18-FEB-22	
Cadmium (Cd)-Total			97.0		%		80-120	18-FEB-22	
Chromium (Cr)-Total			95.8		%		80-120	18-FEB-22	
Cobalt (Co)-Total			93.2		%		80-120	18-FEB-22	
Copper (Cu)-Total			94.6		%		80-120	18-FEB-22	
Lead (Pb)-Total			100.7		%		80-120	18-FEB-22	
Manganese (Mn)-Total			97.1		%		80-120	18-FEB-22	
Molybdenum (Mo)-Tota	I		94.8		%		80-120	18-FEB-22	
Nickel (Ni)-Total			95.8		%		80-120	18-FEB-22	
Selenium (Se)-Total			95.5		%		80-120	18-FEB-22	
Silver (Ag)-Total			90.4		%		80-120	18-FEB-22	
Tin (Sn)-Total			97.2		%		80-120	18-FEB-22	
Titanium (Ti)-Total			96.0		%		80-120	18-FEB-22	
Zinc (Zn)-Total			96.0		%		80-120	18-FEB-22	

Workorder: L2686534 Report Date: 28-FEB-22 Page 5 of 11

Client: Grounded Engineering Inc

1 Banigan Drive

TORONTO ON M4H 1G3

Contact: Shelby Plant

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5727599								
WG3697677-1 MB Aluminum (Al)-Total			<0.0050		mg/L		0.005	18-FEB-22
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	18-FEB-22
Arsenic (As)-Total			<0.00010		mg/L		0.0001	18-FEB-22
Cadmium (Cd)-Total			<0.00000		mg/L		0.000005	18-FEB-22
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	18-FEB-22
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	18-FEB-22
Copper (Cu)-Total			<0.00050		mg/L		0.0005	18-FEB-22
Lead (Pb)-Total			<0.00005		mg/L		0.00005	18-FEB-22
Manganese (Mn)-Total			<0.00050		mg/L		0.0005	18-FEB-22
Molybdenum (Mo)-Total			<0.00005	0	mg/L		0.00005	18-FEB-22
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	18-FEB-22
Selenium (Se)-Total			<0.00005	0	mg/L		0.00005	18-FEB-22
Silver (Ag)-Total			<0.00005	0	mg/L		0.00005	18-FEB-22
Tin (Sn)-Total			<0.00010		mg/L		0.0001	18-FEB-22
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	18-FEB-22
Zinc (Zn)-Total			<0.0030		mg/L		0.003	18-FEB-22
WG3697677-5 MS		WG3697677-	3					
Aluminum (AI)-Total			104.1		%		70-130	18-FEB-22
Antimony (Sb)-Total			102.5		%		70-130	18-FEB-22
Arsenic (As)-Total			101.5		%		70-130	18-FEB-22
Cadmium (Cd)-Total			98.9		%		70-130	18-FEB-22
Chromium (Cr)-Total			98.2		%		70-130	18-FEB-22
Cobalt (Co)-Total			92.3		%		70-130	18-FEB-22
Copper (Cu)-Total			91.6		%		70-130	18-FEB-22
Lead (Pb)-Total			98.0		%		70-130	18-FEB-22
Manganese (Mn)-Total			96.4		%		70-130	18-FEB-22
Molybdenum (Mo)-Total			99.8		%		70-130	18-FEB-22
Nickel (Ni)-Total			93.2		%		70-130	18-FEB-22
Selenium (Se)-Total			100.8		%		70-130	18-FEB-22
Silver (Ag)-Total			88.8		%		70-130	18-FEB-22
Tin (Sn)-Total			98.3		%		70-130	18-FEB-22
Titanium (Ti)-Total			100.4		%		70-130	18-FEB-22
Zinc (Zn)-Total			91.2		%		70-130	18-FEB-22

NP,NPE-LCMS-WT Water

Workorder: L2686534 Report Date: 28-FEB-22 Page 6 of 11

Client: Grounded Engineering Inc

1 Banigan Drive

TORONTO ON M4H 1G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NP,NPE-LCMS-WT	Water							
Batch R5727595								
WG3697354-3 DUP		L2686073-1	4.0					
Nonylphenol	1.4	<1.0	<1.0	RPD-NA	ug/L	N/A	30	17-FEB-22
Nonylphenol Monoethox		<2.0	<2.0	RPD-NA	ug/L	N/A	30	17-FEB-22
Nonylphenol Diethoxylat	es	<0.10	<0.10	RPD-NA	ug/L	N/A	30	17-FEB-22
WG3697354-2 LCS Nonylphenol			98.0		%		75-125	17-FEB-22
Nonylphenol Monoethox	ylates		92.5		%		75-125	17-FEB-22
Nonylphenol Diethoxylat	es		80.2		%		75-125	17-FEB-22
WG3697354-1 MB Nonylphenol			<1.0		ug/L		1	17-FEB-22
Nonylphenol Monoethox	ylates		<2.0		ug/L		2	17-FEB-22
Nonylphenol Diethoxylat			<0.10		ug/L		0.1	17-FEB-22
WG3697354-4 MS		L2686073-1			-			 -
Nonylphenol			120.0		%		60-140	17-FEB-22
Nonylphenol Monoethox	ylates		175.3	K	%		60-140	17-FEB-22
Nonylphenol Diethoxylat	es		89.5		%		60-140	17-FEB-22
OGG-SPEC-WT	Water							
Batch R5727597								
WG3697643-2 LCS			00.0		0/			
Oil and Grease, Total Mineral Oil and Grease			88.8		%		70-130	18-FEB-22
			83.4		%		70-130	18-FEB-22
WG3697643-1 MB Oil and Grease, Total			<5.0		mg/L		5	18-FEB-22
Mineral Oil and Grease			<2.5		mg/L		2.5	18-FEB-22
P-T-COL-WT	Water							
Batch R5728093								
WG3697657-3 DUP		L2686850-1						
Phosphorus, Total		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	22-FEB-22
WG3697657-2 LCS Phosphorus, Total			101.7		%		80-120	22-FEB-22
WG3697657-1 MB Phosphorus, Total			<0.0030		mg/L		0.003	22-FEB-22
WG3697657-4 MS Phosphorus, Total		L2686850-1	82.9		%		70-130	22-FEB-22
PAH-EXTRA-WT	Water							

Workorder: L2686534 Report Date: 28-FEB-22 Page 7 of 11

Client: Grounded Engineering Inc

1 Banigan Drive

TORONTO ON M4H 1G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-EXTRA-WT	Water							
Batch R572837	2							
WG3697929-2 LCS Benzo(e)pyrene			89.9		%		60-130	23-FEB-22
1,3-Dinitropyrene			92.4		%		60-130	23-FEB-22
1,6-Dinitropyrene			94.7		%		60-130	23-FEB-22
Dibenz(a,h)acridine			96.6		%		60-130	23-FEB-22
1,8-Dinitropyrene			110.7		%		60-130	23-FEB-22
Dibenz(a,j)acridine			101.3		%		60-130	23-FEB-22
7H-Dibenzo(c,g)carba	zole		105.1		%		60-130	23-FEB-22
Dibenzo(a,i)pyrene			90.2		%		60-130	23-FEB-22
WG3697929-1 MB								
Benzo(e)pyrene			<0.050		ug/L		0.05	23-FEB-22
1,3-Dinitropyrene			<1.0		ug/L		1	23-FEB-22
1,6-Dinitropyrene			<1.0		ug/L		1	23-FEB-22
Dibenz(a,h)acridine			<0.050		ug/L		0.05	23-FEB-22
1,8-Dinitropyrene			<1.0		ug/L		1	23-FEB-22
Dibenz(a,j)acridine			<0.050		ug/L		0.05	23-FEB-22
7H-Dibenzo(c,g)carba	zole		< 0.050		ug/L		0.05	23-FEB-22
Dibenzo(a,i)pyrene			<0.050		ug/L		0.05	23-FEB-22
Surrogate: d14-Terpho	enyl		96.6		%		40-130	23-FEB-22
PCB-WT	Water							
Batch R572742								
WG3697555-2 LCS Aroclor 1242			104.2		%		05 400	40 FED 00
Aroclor 1248			98.2		%		65-130	18-FEB-22
Aroclor 1254			95.4		%		65-130	18-FEB-22
Aroclor 1260			94.2		%		65-130 65-130	18-FEB-22
			34.2		70		00-130	18-FEB-22
WG3697555-1 MB Aroclor 1242			<0.020		ug/L		0.02	18-FEB-22
Aroclor 1248			< 0.020		ug/L		0.02	18-FEB-22
Aroclor 1254			<0.020		ug/L		0.02	18-FEB-22
Aroclor 1260			<0.020		ug/L		0.02	18-FEB-22
Surrogate: Decachloro	obiphenyl		93.3		%		50-150	18-FEB-22
Surrogate: Tetrachloro	o-m-xylene		68.3		%		50-150	18-FEB-22
PH-WT	Water							

Workorder: L2686534 Report Date: 28-FEB-22 Page 8 of 11

Client: Grounded Engineering Inc

1 Banigan Drive

TORONTO ON M4H 1G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-WT	Water							
Batch R5727769								
WG3697878-4 DUP pH		WG3697878-3 6.79	6.84	J	pH units	0.05	0.2	18-FEB-22
WG3697878-2 LCS pH			6.93		pH units		6.9-7.1	18-FEB-22
PHENOLS-4AAP-ED	Water							
Batch R5729634 WG3700152-3 DUP Phenols (4AAP)		L2686854-1 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	25-FEB-22
WG3700152-2 LCS Phenols (4AAP)			90.0		%		85-115	25-FEB-22
WG3700152-1 MB Phenols (4AAP)			<0.0010		mg/L		0.001	25-FEB-22
WG3700152-4 MS Phenols (4AAP)		L2686977-1	98.1		%		75-125	25-FEB-22
SOLIDS-TSS-WT	Water							
Batch R5727924								
WG3698179-3 DUP Total Suspended Solids		L2687125-1 88.6	87.6		mg/L	1.1	20	21-FEB-22
WG3698179-2 LCS Total Suspended Solids			95.3		%		85-115	21-FEB-22
WG3698179-1 MB Total Suspended Solids			<3.0		mg/L		3	21-FEB-22
TKN-F-WT	Water							
Batch R5728298								
WG3697655-3 DUP Total Kjeldahl Nitrogen		L2686904-1 0.071	0.089	J	mg/L	0.019	0.1	23-FEB-22
WG3697655-2 LCS Total Kjeldahl Nitrogen			105.2		%		75-125	23-FEB-22
WG3697655-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	23-FEB-22
WG3697655-4 MS Total Kjeldahl Nitrogen		L2686904-1	125.3		%		70-130	23-FEB-22
VOC-ROU-HS-WT	Water							
Batch R5726998								
WG3697184-4 DUP 1,1,2,2-Tetrachloroethar	ne	WG3697184-3 < 0.50	<0.50	RPD-NA	ug/L	N/A	30	18-FEB-22
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-FEB-22

Workorder: L2686534 Report Date: 28-FEB-22 Page 9 of 11

Client: Grounded Engineering Inc

1 Banigan Drive

TORONTO ON M4H 1G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R572699	98							
WG3697184-4 DUP	•	WG3697184-			4			
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-FEB-22
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-FEB-22
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	18-FEB-22
cis-1,2-Dichloroethyle	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-FEB-22
Dichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	18-FEB-22
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-FEB-22
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	18-FEB-22
o-Xylene		< 0.30	< 0.30	RPD-NA	ug/L	N/A	30	18-FEB-22
Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-FEB-22
trans-1,3-Dichloroprop	pene	<0.30	< 0.30	RPD-NA	ug/L	N/A	30	18-FEB-22
Trichloroethylene		7.86	8.72		ug/L	10	30	18-FEB-22
WG3697184-1 LCS			113.1		%		70.400	47 FFD 00
1,1,2,2-Tetrachloroeth	idile		102.0		%		70-130	17-FEB-22
1,2-Dichlorobenzene			99.8		%		70-130	17-FEB-22
1,4-Dichlorobenzene Benzene			99.8 96.9				70-130	17-FEB-22
			96.9		%		70-130	17-FEB-22
Chloroform					%		70-130	17-FEB-22
cis-1,2-Dichloroethyle Dichloromethane	ne		98.1				70-130	17-FEB-22
			104.1		%		70-130	17-FEB-22
Ethylbenzene			95.4 96.5		%		70-130	17-FEB-22
m+p-Xylenes			96.5 95.3		%		70-130	17-FEB-22
o-Xylene					%		70-130	17-FEB-22
Tetrachloroethylene trans-1,3-Dichloroprop	nono		98.4 106.6		%		70-130	17-FEB-22
	pene				%		70-130	17-FEB-22
Trichloroethylene			98.3		70		70-130	17-FEB-22
WG3697184-2 MB 1,1,2,2-Tetrachloroeth	nane		<0.50		ug/L		0.5	17-FEB-22
1,2-Dichlorobenzene			<0.50		ug/L		0.5	17-FEB-22
1,4-Dichlorobenzene			<0.50		ug/L		0.5	17-FEB-22
Benzene			<0.50		ug/L		0.5	17-FEB-22
Chloroform			<1.0		ug/L		1	17-FEB-22
cis-1,2-Dichloroethyle	ne		<0.50		ug/L		0.5	17-FEB-22
Dichloromethane			<2.0		ug/L		2	17-FEB-22
Ethylbenzene			<0.50		ug/L		0.5	
,					J			

Workorder: L2686534 Report Date: 28-FEB-22 Page 10 of 11

Client: Grounded Engineering Inc

1 Banigan Drive

TORONTO ON M4H 1G3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R5726998	3							
WG3697184-2 MB			0.50		/1		0.5	
Ethylbenzene			<0.50		ug/L		0.5	17-FEB-22
m+p-Xylenes			<0.40		ug/L		0.4	17-FEB-22
o-Xylene			<0.30		ug/L		0.3	17-FEB-22
Tetrachloroethylene			<0.50		ug/L		0.5	17-FEB-22
trans-1,3-Dichloroprope	ene		<0.30		ug/L		0.3	17-FEB-22
Trichloroethylene			<0.50		ug/L		0.5	17-FEB-22
Surrogate: 1,4-Difluoro			100.1		%		70-130	17-FEB-22
Surrogate: 4-Bromofluc	orobenzene		99.0		%		70-130	17-FEB-22
WG3697184-5 MS 1,1,2,2-Tetrachloroetha	ane	WG3697184-3	87.3		%		50-150	18-FEB-22
1,2-Dichlorobenzene			101.1		%		50-150	18-FEB-22
1,4-Dichlorobenzene			101.4		%		50-150	18-FEB-22
Benzene			95.0		%		50-150	18-FEB-22
Chloroform			97.1		%		50-150	
cis-1,2-Dichloroethylen	۵		95.4		%			18-FEB-22
Dichloromethane	C		97.5		%		50-150 50-150	18-FEB-22 18-FEB-22
Ethylbenzene			96.5		%			-
m+p-Xylenes			96.6		%		50-150	18-FEB-22
o-Xylene			95.3		%		50-150	18-FEB-22
Tetrachloroethylene			97.4		%		50-150	18-FEB-22
trans-1,3-Dichloroprope	ono		97.4		%		50-150	18-FEB-22
	ene.		97.0		%		50-150	18-FEB-22
Trichloroethylene			91.1		70		50-150	18-FEB-22
Batch R5728209)	W. C.						
WG3698280-4 DUP Toluene		WG3698280-3 < 0.40	<0.40	RPD-NA	ug/L	N/A	30	23-FEB-22
WG3698280-1 LCS			101.10	III D IVA	g/ =	14/71	00	201 LD 22
Toluene			99.5		%		70-130	22-FEB-22
WG3698280-2 MB								
Toluene			<0.40		ug/L		0.4	22-FEB-22
WG3698280-5 MS		WG3698280-3						
Toluene			95.2		%		50-150	23-FEB-22

Workorder: L2686534 Report Date: 28-FEB-22

Grounded Engineering Inc Client:

1 Banigan Drive

TORONTO ON M4H 1G3

Contact: Shelby Plant

Legend:

ALS Control Limit (Data Quality Objectives) DUP Duplicate RPD Relative Percent Difference N/A Not Available LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

Average Desorption Efficiency ADE

Method Blank MB

IRM Internal Reference Material CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
K	Matrix Spike recovery outside ALS DQO due to sample matrix effects.
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
RRQC	Refer to report remarks for information regarding this QC result.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

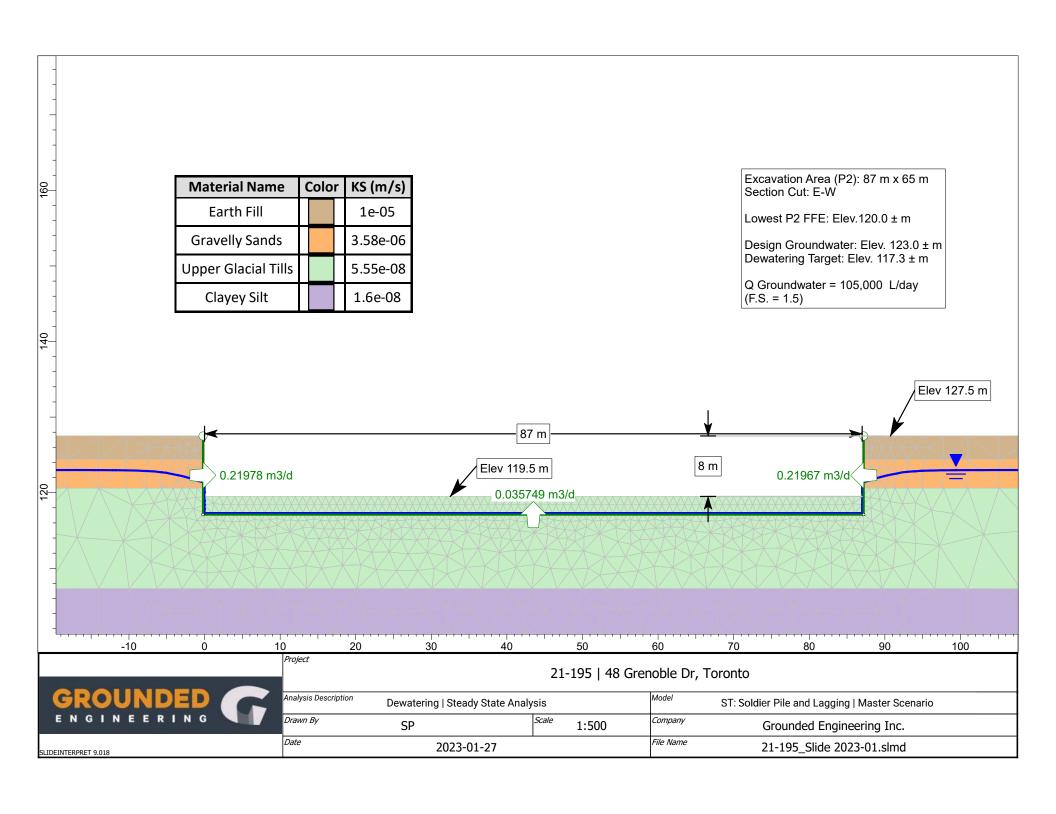
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

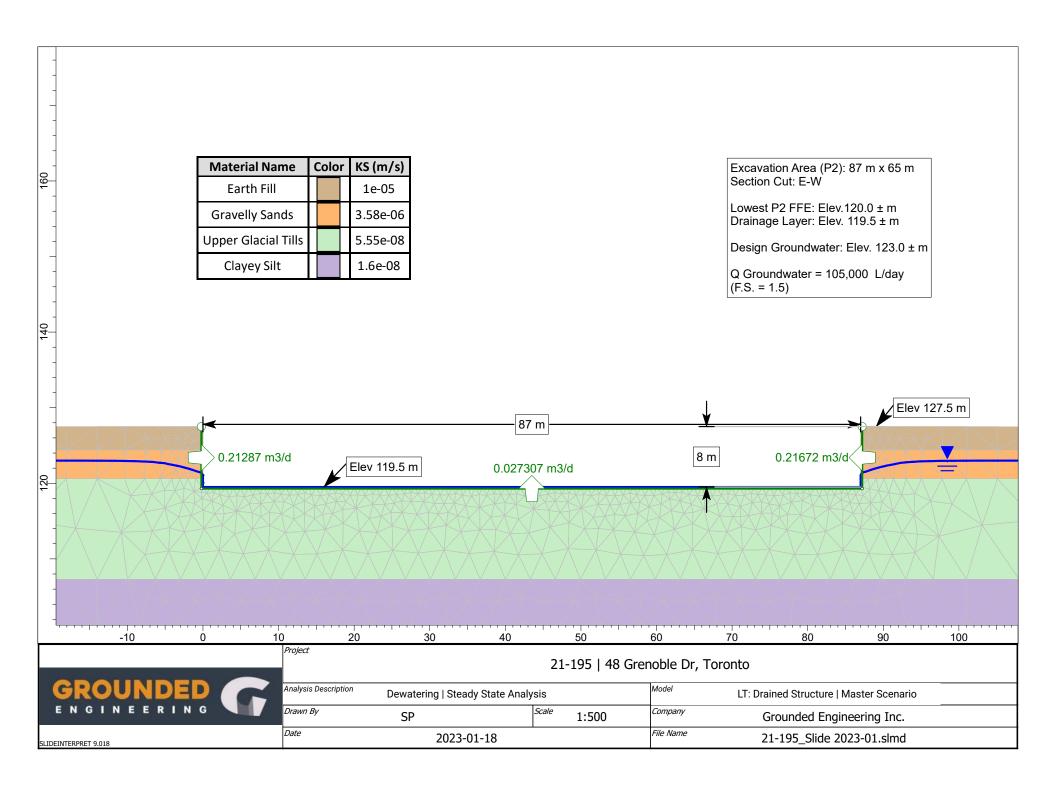
The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Page 11 of 11

* Form


COC Number: 20 - 954787


Page of

Report To	Contact and company name below will appea	ar on the final report	Керополи.						Turnaround	Turnaround Time (TAT) Requested						THE STREET	No.		
Company:	Grounded Engi	nerind	Select Report Fo	rmat: 🔼 PDF [D EXCEL D EXC	(DIGITAL)	Rou	tine [R] if i	eceived by 3pm	M-F - no su	rcharges a	pply							
Contact:	Shellby Plant		Merge QC/QC!	Reports with COA	Jary Yes □ NO	□ N/A	_		ceived by 3pm										
Phone:			Compare Resul	ts to Criteria on Report - pr	ovide details below if b	ox checked	_		eceived by 3pm			_		^	AFFIX ALS BARCODE LABEL HERE (ALS use only)				
Water State	Company address below will appear on the final	report	Select Distributio	•	MAIL F		-		eceived by 3pm ceived by 3pm			-							
Street:	IBUNIAUN DO		Email 1 or Fax	Spiant	@ ground	ed eny .cox	1 day [E] if received by 3pm M-F - 100% rush surcharge minimum 2 Same day [E2] if received by 10am M-F - 200% rush surcharge. Additional fee						ees .						
City/Province:	To-02to 01		Email 2					may apply to room reduces to an measures, statutory routbays are marricular tes						ests	5				
Postal Code:	MUHIEG		Email 3					Date and Time Required for all E&P TATs:							pasteriansy historian par				
Invoice To	Same as Report To	NO	Involce Recipients					For all tests with rush TATs requested, please contact your AM							confirm a	vallabilily.	manifesti missionity	**************************************	
	Copy of Invoice with Report] NO	Select Invoice Di	stribution: 🖊 🖼	AIL MAIL	FAX	Analysis Request										an a	***************************************	
Company:			Email 1 or Fax				CONTAINERS	<u> </u>	Indicate Fill	ered (F), Pres	erved (P)	or Fillere	d and Pres	erved (F/P) below		_		(Sa
Contact:	***************************************		Email 2			······································	ᄬ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 			CONTRACTOR OF THE PARTY OF THE					WWW.emman.pmcs		REQUIRED	(see notes)
	Project Information			il and Gas Required	g Marie Danger (1995) and All American Marie (1995) and All	B)	2	Comp					1				٥	B	98
ALS Account # /			AFE/Cost Center: PO#					ଓ							1 1		15	1 H	
Job #:	21-195		Major/Minor Code: Routing Code:					श				i i			1 1		ľ	AG	AR
PO / AFE:			redrisioner:					San's ferry					}				을 되는 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	STORAGE	ΙŽ
LSD:	48 Grenobledr.		Location:			ROSE BANK (NO. 1917)	6	٠٤			1	1					ഗ	(O	<u>-</u>
ALS Lab Worl	c Order# (ALS use only): LXS(,634	ALS Contact:		Sampler: 1)	NUMBER	Stormts			-						SAMPLE	EXTENDED	SUSPECTED HAZARD
ALS Sample #	Sample Identification	and/or Coordinates		Date	Time	Sample Type]	اقِ	1						1 1		3	Ĕ	USF
(ALS use only)	(This description will a	Market		(dd-mmm-yy)	(hh:mm)						***************************************	-					o	i iii	<u> </u>
Shirt of the Control	SW-UF- (342_		16-Feb-22	13,00	GW	20	X								<u> </u>	\bot		ot
														1					
4 3 4 5																-	TO COMMO		
THE SECTION OF SEC			,																
36 5 6 6	LIMBS OF																\neg	1	17
									+ +	 		1					+	-	+
	Walter Co. 1	cawer				-	├		+ +			-			- '	-	+	╁	-
erina suij j		M117												14				+	
5 7 40 4											<u> </u>								
					<u> </u>							<u></u>							
La la compania	1.440.00							-		ľ .		Ì					oholikssee		
11/2 #1 ₄ /1995 #0 /C												Ţ					- Constitution of the Cons		
Section Control	,											1					\top		\top
		Notes (Society	- Limito for recult	evaluation by selecting	a from dron-down b	l Jelow	19.8553	ia www.ia		SAMPI	ERECE	IPT DE	TAILS	ALS use	only)				
Drinking	g Water (DW) Samples ¹ (client use)	Notes / Speciny		Excel COC only)	a nous mob-gows r	,6.011			: NO							rj coc	LING INT	TIATED	g di la
Are samples taker	n from a Regulated DW System?	Cilu a C	Tacanto	Storm	1912 S	anidaru	Submi	ssion Co	mments ider	tified on S	ample R	ecelpt 1	lotificatio	in:		YES	□100		
☐ YE	s of NO	City of	(0.00,000	Co,	~ Wines		Coole	Custody	Seals Intact		YES [] N/A	Sample	Custody	Seals	ntact:		YES (⊐ N/A
Are samples for h	uman consumption/ use?					•	600	INIT	AL COOLER TE	MPERATUR	ES°C			FINAL	COOLE	R TEMPE	RATURES	°C.	
☐ YE	s 🗹 🗝						18.9	1					1-	9	1333		Assembly 1	gi by	ara i
	SHIPMENT RELEASE (client use)		F-12-12-13-12-13-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	INITIAL SHIPMENT	RECEPTION (AL	S use only)	TOWNS (A			FI	NAL SH			YION (A			objects	建安徽的 化	SC 100 (13)
Released by:	Sunderalingum Dale: Feb 16/	Time:	Received by:		Date: 117/s	regi taken yang. Managan	Time:		celved by:	Hī	7	Date	1/2.	-02	5	7	Tim	"	-
Kishani ?	Sundiarahingan Feb 16/		⊢µ·K	WHO	TE - LABORATORY	JAN COPY VELLO		NT COPY	Option of the second		7	1	19					7	IC NOTRON

APPENDIX F

APPENDIX G

SHORT TERM - Soldier Pile and Lagging							
Excavation Dimensions [m]			Rainfall Data				
N-S	65		Year	2	100		
E-W	87		Hour	3	12		
Area (m2)	5655		Depth (mm)	25	94		
Perimeter (m)	300		Depth (m)	0.025	0.094		
	-						
Section		Flow [m3/day]	Length [m]	Volume [L/day]			
Base		0.035749	65	2,324			
Sides		0.21978	300	65,934			
Total				68,258			
Factor of Safety 1.5					102,387		
	_						
Storm Events			Summary	L/day	L/min		
2 Year [L/day]	100 Year [L/day]		Groundwater	105,000	72.9		
141,375	532,000		Rainfall	142,000	98.6		
			Total	247,000	171.5		

LONG TERM - Drained Structure							
Excavation Dimensions [m]		Rainfall Data					
N-S	65	Year	2	100			
E-W	87	Hour	3	12			
Area (m2)	5655	Depth (mm)	25	94			
Perimeter (m)	300	Depth (m)	0.025	0.094			
Section		Flow [m3/day]	Length [m]	Volume [L/day]			
Base		0.027223	65	1,769			
Sides		0.21646	300	64,938			
Total				66,707			
Factor of Safety 1.5				100,061			
Infiltration [L/day]		Summary	L/day	L/min			
21040.125		Groundwater	105,000	72.9			
		Infiltration	22,000	15.3			
		Total	127,000	88.2			